(本小題滿分14分)

已知橢圓方程為),拋物線方程為.過拋物線的焦點作軸的垂線,與拋物線在第一象限的交點為,拋物線在點的切線經(jīng)過橢圓的右焦點. 

(1)求滿足條件的橢圓方程和拋物線方程;

(2)設(shè)為橢圓上的動點,由軸作垂線,垂足為,且直線上一點滿足,求點的軌跡方程,并說明軌跡是什么曲線.

 

【答案】

【解析】解:(1)拋物線的焦點為,過拋物線的焦點垂線于軸的直線為.

得點的坐標(biāo)為.                     ………………2分

,

,故.                             ………………3分

∴拋物線在點的切線方程為,即.   …………4分

又由橢圓方程及知,右焦點的坐標(biāo)為.      …………5分

,解得.                         ………………7分

∴橢圓方程為,拋物線方程為.       ………………8分

(2)設(shè)點的坐標(biāo)為,點的坐標(biāo)為,則點的坐標(biāo)為,且.由已知知.                      ………………10分

將其代入橢圓方程得.                       ………………11分

當(dāng),即時,點的軌跡方程為,其軌跡是以原點為圓心,半徑為的圓;                                ………………12分

當(dāng),即時,點的軌跡方程為,其軌跡是焦點在軸上的橢圓;                                      ………………13分

當(dāng),即時,點的軌跡方程為,其軌跡是焦點在 軸上的橢圓.                                         ………………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案