【題目】已知,方程有三個(gè)實(shí)根,若,則實(shí)數(shù)( )

A. B. C. D.

【答案】B

【解析】

判斷fx)與2 的大小,化簡(jiǎn)方程求出x1、x2、x3的值,根據(jù)得x3x22x2x1)得出a的值.

1x20x21,則﹣1x1,,

當(dāng)x0時(shí),由fx)=2,即﹣2x2

x21x2,即2x21,x2,則x,

當(dāng)﹣1x時(shí),有fx)≥2,

原方程可化為fx+2fx)﹣22ax40

即﹣4x2ax40,得x,由﹣1

解得:0a22

當(dāng)x1時(shí),fx)<2,原方程可化為42ax40,

化簡(jiǎn)得(a2+4x2+4ax0,解得x0,或x,

0a22,∴0

x1x2,x30

x3x22x2x1),得 2),

解得a(舍)或a

因此,所求實(shí)數(shù)a

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),,均在圓上.

(1)求圓的方程;

(2)若直線與圓相交于、兩點(diǎn),求的長(zhǎng);

(3)設(shè)過(guò)點(diǎn)的直線與圓相交于、兩點(diǎn),試問(wèn):是否存在直線,使得以為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù) 有以下四個(gè)命題:

①對(duì)于任意的,都有; ②函數(shù)是偶函數(shù);

③若為一個(gè)非零有理數(shù),則對(duì)任意恒成立;

④在圖象上存在三個(gè)點(diǎn),,使得為等邊三角形.其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(1,0).且點(diǎn)C與點(diǎn)D在函數(shù)f(x)= 的圖象上.若在矩形ABCD內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自空白部分的概率等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}中,a2=4,a4+a7=15. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2 +n,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿足,當(dāng)時(shí),,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+x2(a∈R)在x=﹣ 處取得極值.
(1)確定a的值;
(2)討論函數(shù)g(x)=f(x)ex的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬(wàn)件.今年擬下調(diào)銷售單價(jià)以提高銷量增加收益.據(jù)估算,若今年的實(shí)際銷售單價(jià)為元/件,則新增的年銷量(萬(wàn)件).

(Ⅰ)寫出今年商戶甲的收益(單位:萬(wàn)元)與的函數(shù)關(guān)系式;

(Ⅱ)商戶甲今年采取降低單價(jià)提高銷量的營(yíng)銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,則下列命題正確的是 . (填寫所有正確命題的序號(hào)) ①若sinAsinB=2sin2C,則0<C< ;
②若a+b>2c,則0<C<
③若a4+b4=c4 . 則△ABC為銳角三角形;
④若(a+b)c<2ab,則C>

查看答案和解析>>

同步練習(xí)冊(cè)答案