9.函數(shù)f(x)=$\frac{1}{3}$x3-2x的單調(diào)遞增區(qū)間為(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞).

分析 求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的遞增區(qū)間即可.

解答 解:∵$f(x)=\frac{1}{3}{x^3}-2x$,
∴f′(x)=x2-2,
令f′(x)>0,解得:x>$\sqrt{2}$或x<-$\sqrt{2}$,
故函數(shù)的單調(diào)遞增區(qū)間是(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,若點(diǎn)P在正方形內(nèi)(不含邊界),且滿足$\overrightarrow{PA}$$•\overrightarrow{PB}$=1
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)求|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|的取值范圍;
(Ⅲ)求|$\overrightarrow{PC}$-2$\overrightarrow{PD}$|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=sin2x-x(0<x<$\frac{π}{2}$)的單調(diào)增區(qū)間是(0,$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在頻率分布直方圖中,共有11個(gè)小長(zhǎng)方形,若中間一個(gè)小長(zhǎng)方形的面積等于其他10個(gè)小長(zhǎng)方形的面積和,且樣本容量為160,則中間一組的頻數(shù)為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e${\;}^{\frac{x}{2}}$的解集是( 。
A.(ln2,+∞)B.(2ln2,+∞)C.(-∞,ln2)D.(-∞,2ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f(x)=x3-f′(1)x2+1,則f′(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x>0}\\{y≥x}\\{2x+y-6≤0}\\{\;}\end{array}\right.$,則$\frac{2x+y+2}{x}$的最小值為( 。
A.1B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)Sn是數(shù)列{an}(n∈N+)的前n項(xiàng)和,n≥2時(shí)點(diǎn)(an-1,2an)在直線y=2x+1上,且{an}的首項(xiàng)a1是二次函數(shù)y=x2-2x+3的最小值,則S9的值為( 。
A.6B.7C.36D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$\overrightarrow{OP}$=(2,1),$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),設(shè)R是直線OP上的一點(diǎn),其中O是坐標(biāo)原點(diǎn).
(Ⅰ)求使$\overrightarrow{RA}$$•\overrightarrow{RB}$取得最小值時(shí)$\overrightarrow{OR}$的坐標(biāo)的坐標(biāo);
(Ⅱ)對(duì)于(1)中的點(diǎn)R,求$\overrightarrow{RA}$與$\overrightarrow{RB}$夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案