某迷宮有三個通道,進入迷宮的每個人都要經(jīng)過一扇智能門.首次到達此門,系統(tǒng)會隨機(即等可能)為你打開一個通道.若是1號通道,則需要1小時走出迷宮;若是2號、3號通道,則分別需要2小時、3小時返回智能門.再次到達智能門時,系統(tǒng)會隨機打開一個你未到過的通道,直至走出迷宮為止.令ξ表示走出迷宮所需的時間.
(1)求走出迷宮時恰好用了l小時的概率;
(2)求ξ的分布列和數(shù)學(xué)期望.
分析:(1)由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的所有事件數(shù)為3,而滿足條件的事件數(shù)是1,根據(jù)古典概型的概率公式得到結(jié)果.
(2)ξ的所有可能取值為:1,3,4,6,然后根據(jù)等可能事件的概率公式分別求出相應(yīng)的概率,列出分布列,最后利用數(shù)學(xué)期望公式解之即可.
解答:解:(1)由題意知本題是一個等可能事件的概率
∵試驗發(fā)生包含的所有事件數(shù)為3,
而滿足條件的事件數(shù)是1,
設(shè)A表示走出迷宮時恰好用了1小時這一事件,
∴P(A)=
1
3

(2)ξ的所有可能取值為:1,3,4,6
P(ξ=1)=
1
3
,P(ξ=3)=
1
6
,P(ξ=4)=
1
6
,P(ξ=6)=
1
3
,
所以ξ的分布列為:
ξ 1 3 4 6
P
1
3
1
6
1
6
1
3
Eξ=1×
1
3
+3×
1
6
+4×
1
6
+6×
1
3
=
7
2
(小時)
點評:考查數(shù)學(xué)知識的實際背景,重點考查相互獨立事件的概率乘法公式計算事件的概率、隨機事件的數(shù)學(xué)特征和對思維能力、運算能力、實踐能力的考查,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某迷宮有三個通道,進入迷宮的每個人都要經(jīng)過一扇智能門.首次到達此門,系統(tǒng)會隨機(即等可能)為你打開一個通道.若是1號通道,則需要1小時走出迷宮;若是2號、3號通道,則分別需要2小時、3小時返回智能門.再次到達智能門時,系統(tǒng)會隨機打開一個你未到過的通道,直至走出迷宮為止.
(1)求走出迷宮時恰好用了1小時的概率;
(2)求走出迷宮的時間超過3小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某迷宮有三個通道,進入迷宮的每個人都要經(jīng)過一扇智能門.首次到達此門,系統(tǒng)會隨機(即等可能)為你打開一個通道,若是1號通道,則需要1小時走出迷宮;若是2號、3號通道,則分別需要2小時、3小時返回智能門.再次到達智能門時,系統(tǒng)會隨機打開一個你未到過的通道,直至走完迷宮為止.令ξ表示走出迷宮所需的時間.
(1)求ξ的分布列;
(2)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某迷宮有三個通道,進入迷宮的每個人都要經(jīng)過一扇智能門。首次到達此門,系統(tǒng)會隨機(即等可能)為你打開一個通道.若是1號通道,則需要1小時走出迷宮;若是2號、3號通道,則分別需要2小時、3小時返回智能門.再次到達智能門時,系統(tǒng)會隨機打開一個你未到過的通道,直至走出迷宮為止.

    (1)求走出迷宮時恰好用了1小時的概率;

(2)求走出迷宮的時間超過3小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分高☆考♂資♀源*網(wǎng)12分)

某迷宮有三個通道,進入迷宮的每個人都要經(jīng)過一扇智能門。首次到達此門,系統(tǒng)會隨機(即等可能)為你打開一個通道,若是1號通道,則需要1小時走出迷宮;若是2號、3號通道,則分別需要2小時、3小時返回智能門。再次到達智能門時,系統(tǒng)會隨機打開一個你未到過的通道,直至走完迷宮為止。令表示走出迷宮所需的時間。

的分布列;

的數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案