6.一個工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為x(x∈N*)件.當(dāng)x≤20時,年銷售總收入為(33x-x2)萬元;當(dāng)x>20時,年銷售總收入為260萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為y萬元,
(1)y(萬元)與x(件)的函數(shù)關(guān)系式為?
(2)該工廠的年產(chǎn)量為多少件時,所得年利潤最大,并求出最大值.(年利潤=年銷售總收入-年總投資)

分析 (1)根據(jù)已知,分當(dāng)x≤20時和當(dāng)x>20時兩種情況,分別求出年利潤的表達(dá)式,綜合可得答案;
(2)根據(jù)(1)中函數(shù)的解析式,分類求出各段上的最大值點(diǎn)和最大值,綜合可得答案.

解答 解:(1)由題意 得:當(dāng)x≤20時,y=(33x-x2)-x-100=-x2+32x-100;…(4分)
當(dāng)x>20時,y=260-100-x=160-x.…(6分)
故y=$\left\{\begin{array}{l}-x2+32x-100,0<x≤20\\ 160-x,x>20.\end{array}$(x∈N*).…(8分)
(2)當(dāng)0<x≤20時,y=-x2+32x-100=-(x-16)2+156,…(10分)
當(dāng)x=16時,ymax=156.
而當(dāng)x>20時,160-x<140,
故x=16時取得最大年利潤156萬元. …(12分)

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)模型的選擇與應(yīng)用,分段函數(shù)的應(yīng)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=2sinx(x∈[0,π])的值域為[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}{cos^2}x-\sqrt{3}$的最小正周期是π,單調(diào)遞減區(qū)間是[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6相交.則?p及?p的真假為( 。
A.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為真
B.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為假
C.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為真
D.¬p:?a∈R,直線ax+y-2a-1=0與圓x2+y2=6不相交,¬p為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,左右頂點(diǎn)分別為A1,A2,過F1作斜率不為0的直線l與橢圓交于A,B兩點(diǎn),△ABF2的周長為8.橢圓上一點(diǎn)P與A1,A2連線的斜率之積${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$(點(diǎn)P不是左右頂點(diǎn)A1,A2).
(Ⅰ)求該橢圓方程;
(Ⅱ)已知定點(diǎn)M(0,m)(其中常數(shù)m>0),求橢圓上動點(diǎn)N與M點(diǎn)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若三棱錐的三視圖如圖,則其表面積為30+6$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=mx2+2mx+1.
(1)當(dāng)m=1時,求不等式f(x)>-x-2的解集.
(2)若f(x)>0對任意x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既無最大值,也無最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),則下列結(jié)論成立的是①②④.(把你認(rèn)為正確結(jié)論的序號都寫上)
①若f(x1)≤f(x2)對任意實(shí)數(shù)x恒成立,則x2-x1必定是$\frac{π}{2}$的整數(shù)倍;
②y=f(x)的圖象關(guān)于($\frac{4π}{3}$,0)對稱;
③對于函數(shù)y=|f(x)|(x∈R)的圖象,x=-$\frac{5π}{12}$一定是一條對稱軸且相鄰兩條對稱軸之間的距離是$\frac{π}{2}$;
④函數(shù)f(x)在每一個[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有嚴(yán)格的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線C1:y2=2px(p>0)的焦點(diǎn)為F,圓C2:x2+y2=4,若C1與C2交于A,B兩點(diǎn),且|AB|=2$\sqrt{3}$,則拋物線C1上的點(diǎn)P(m,3$\sqrt{3}$)到F的距離為( 。
A.$\frac{21}{2}$B.21C.$\frac{39}{2}$D.$\frac{39}{4}$

查看答案和解析>>

同步練習(xí)冊答案