5.已知$\overrightarrow a=(4,-2),\overrightarrow b=(cosα,sinα)$且$\overrightarrow a⊥\overrightarrow b$,則$\frac{{{{sin}^3}α+{{cos}^3}α}}{sinα-cosα}$為( 。
A.2B.$\frac{9}{5}$C.3D.$-\frac{3}{5}$

分析 由$\overrightarrow a⊥\overrightarrow b$得$\overrightarrow{a}$•$\overrightarrow$=0,求出sinα=2cosα,代入$\frac{{{{sin}^3}α+{{cos}^3}α}}{sinα-cosα}$計算即可.

解答 解:$\overrightarrow a=(4,-2),\overrightarrow b=(cosα,sinα)$,且$\overrightarrow a⊥\overrightarrow b$,
∴$\overrightarrow{a}$•$\overrightarrow$=4cosα-2sinα=0,
∴sinα=2cosα,且cosα≠0;
∴$\frac{{{{sin}^3}α+{{cos}^3}α}}{sinα-cosα}$=$\frac{{8cos}^{3}α{+cos}^{3}α}{2cosα-cosα}$
=9cos2α
=$\frac{{9cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{{9cos}^{2}α}{{4cos}^{2}α{+cos}^{2}α}$
=$\frac{9}{5}$.
故選:B.

點評 本題考查了三角函數(shù)的化簡與求值,考查了同角三角函數(shù)的基本關(guān)系式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=sinx-cos(x+$\frac{π}{6}$),x∈[0,π]的值域是[-$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\vec a=({3,-2})$,$\vec b=({4,6})$,若向量$2\vec a+\vec b$與向量$\vec b$的夾角為θ,則cosθ=( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知命題:
①α>β的充分不必要條件是sinα>sinβ
②若a,b∈R,ab<0,則$\frac{a}+\frac{a}≤-2$
③命題“若x+y≠5,則x≠2或y≠3”的否命題為假命題
④若a≠b,則a3+b3>a2b+ab2
其中真命題的序號是②③.(請把所有真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|ax-1|(a∈R),不等式f(x)≤2的解集是{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}.
(1)求a的值;
(2)解不等式f(x)+f($\frac{x}{2}$-1)≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a,b,c分別為△ABC中角A,B,C的對邊,函數(shù)$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.
(1)求角A的大;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知O為坐標(biāo)原點,F(xiàn)是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點,A,B分別為雙曲線C的左、右頂點,P為雙曲線C上的一點,且PF⊥x軸,過點A的直線l與線段PF交于M,與y軸交于點E,直線BM與y軸交于點N,若|OE|=3|ON|,則雙曲線C的離心率為( 。
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2017年1月1日,作為貴陽市打造“千園之城”27個示范性公元之一的泉湖公園正式開園,元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項目向全體市民開放,現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列2×2列聯(lián)表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
  愿意 不愿意 總計
 男生   
 女生   
 總計   
(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再從中抽取2人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.
參考公式與數(shù)據(jù):
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=x2-27有極小值為-27.

查看答案和解析>>

同步練習(xí)冊答案