【題目】已知函數(shù)f(x)= ax2+4x﹣lnx.
(1)當a=﹣3時,求f(x)的單調(diào)區(qū)間;
(2)當a≠0時,若f(x)是減函數(shù),求a的取值范圍.
【答案】
(1)解:f(x)的定義域是為(0,+∞)
a=﹣3,
令 ,
令 ,
所以f(x)的單調(diào)增區(qū)間為 ,單調(diào)減區(qū)間為 、(1,+∞)
(2)解:要使f(x)是減函數(shù),必須使f'(x)≤0,即 ,
由于x>0,要使f'(x)≤0,只要ax2+4x﹣1≤0即
∴a≤﹣4
故a的取值范圍為(﹣∞,﹣4]
【解析】(1)代入,求出函數(shù)的導函數(shù)f'(x),根據(jù)導函數(shù)的正負判斷函數(shù)的單調(diào)區(qū)間;(2)根據(jù)題意可知f'(x)≤0,可轉(zhuǎn)化為ax2+4x﹣1≤0(x>0)利用二次函數(shù)的性質(zhì)求解即可.
【考點精析】認真審題,首先需要了解利用導數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減).
科目:高中數(shù)學 來源: 題型:
【題目】設點M(x,y)在|x|≤1,|y|≤1時按均勻分布出現(xiàn),試求滿足:
(1)x+y≥0的概率;
(2)x+y<1的概率;
(3)x2+y2≥1的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,探究函數(shù)的單調(diào)性;
(2)若關(guān)于的不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e﹣2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A,B,C為△ABC的三個內(nèi)角,且其對邊分別為a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
(1)當, 恒成立,求實數(shù)的取值范圍.
(2)設在上有兩個極值點.
(A)求實數(shù)的取值范圍;
(B)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x= 時,四邊形MENF的面積最小;
③四邊形MENF周長l=f(x),x∈0,1]是單調(diào)函數(shù);
④四棱錐C′﹣MENF的體積v=h(x)為常函數(shù);
以上命題中真命題的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com