在所有的兩位數(shù)中,任取一個(gè)數(shù),則這個(gè)數(shù)能被2或3整除的概率是
 
考點(diǎn):古典概型及其概率計(jì)算公式
專(zhuān)題:概率與統(tǒng)計(jì)
分析:所有的兩位數(shù)(10-99)共有90個(gè),求得其中被2整除的有45個(gè),被3整除的有30個(gè),被6整除的有15個(gè),可得能被2或3整除的數(shù)有60個(gè),由此求得這個(gè)數(shù)能被2或3整除的概率.
解答: 解:在所有的兩位數(shù)(10-99)共有90個(gè),其中被2整除的有10,12,14,…,98,共計(jì)45個(gè).
被3整除的有12,15,18,…,99,共計(jì)30個(gè),被6整除的有12,18,24,…,96,共計(jì)15個(gè),
故能被2或3整除的數(shù)有45+30-15=60個(gè).
故任取一個(gè)數(shù),則這個(gè)數(shù)能被2或3整除的概率為P=
60
90
=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題考查古典概型及其概率計(jì)算公式的應(yīng)用,等差數(shù)列的通項(xiàng)公式,求得被2或3整除的數(shù)有60個(gè),是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+3x-2,x<0
(),x>0
為偶函數(shù),則括號(hào)內(nèi)應(yīng)該填寫(xiě)的是( 。
A、x2+3x-2
B、x2-3x-2
C、-x2+3x-2
D、-x2+3x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
S8
S4
=2
,則公比q=( 。
A、±2B、±1C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,給出以下四個(gè)結(jié)論:
①若m?α,n∥α,則m∥n;            
②若m⊥n,m⊥β,則n∥β;
③若α∩β=n,m∥n,則m∥α且m∥β;  
④若m⊥α,m⊥β,則α∥β.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B及其對(duì)邊a,b滿足a+b=a
1
tanA
+b
1
tanB
,求C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比為正數(shù),且a3•a9=2a52,a2=1,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x(y+
1
x
)=2013,x和y都是正整數(shù),那么x+y的最大值是
 
,x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(x+1)-loga(1-x),(a>0且a≠1)
(Ⅰ)求實(shí)f(x)的定義域;
(Ⅱ)判斷f(x)的奇偶性并予以證明;
(Ⅲ)當(dāng)a>0時(shí),求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“1<m<2”是“方程
x2
m-1
+
y2
3-m
=1表示的曲線是焦點(diǎn)在y軸上的橢圓”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案