已知離心率為的橢圓上的點到左焦點的最長距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點在軸上,且使得為的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.
(1)橢圓的方程為,其準線方程為;(2).
【解析】
試題分析:(1)由題意知:,解得,,
故橢圓的方程為,其準線方程為 4分
(2)設為橢圓的左特征點,橢圓的左焦點為,可設直線的方程為:,
聯(lián)立方程組,消去得,即,
設,則
∵被軸平分,∴,即,
,
即,
∴于是,
∵,∴,即,∴.
考點:本題主要考查橢圓的標準方程,橢圓的幾何性質(zhì),直線與橢圓的位置關系,三角形面積計算。
點評:中檔題,不必太其橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),a,b,c,e的關系。曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)涉及新定義問題,注意理解其實質(zhì)內(nèi)容。
科目:高中數(shù)學 來源:2011-2012學年廣西桂林十八中高三第二次月考試卷理科數(shù)學 題型:解答題
(本小題滿分12分)已知離心率為的橢圓上的點到
左焦點的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點在軸上,且使得為的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣西桂林十八中高三(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:廣西桂林十八中2011-2012學年高三第二次月考試題數(shù)學文 題型:解答題
已知離心率為的橢圓上的點到左焦點的最長距離為.
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點在軸上,且使得為的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:廣西桂林十八中2011-2012學年高三第二次月考試題數(shù)學理 題型:解答題
已知離心率為的橢圓上的點到左焦點的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點在軸上,且使得為的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com