如圖橢圓C的方程為,A是橢圓C的短軸左頂點,過A點作斜率為﹣1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為

(1)求橢圓C的方程;

(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

解答: 解:(1),又∠PAB=45°,AP=PB,故AP=BP=3.

∵P(1,0),A(﹣2,0),B(1,﹣3)

∴b=2,將B(1,﹣3)代入橢圓得:得a2=12,

所求橢圓方程為

(2)設(shè)橢圓C的焦點為F1,F(xiàn)2,

則易知F1(0,﹣)F2(0,),

直線AB的方程為:x+y+2=0,因為M在雙曲線E上,要雙曲線E的實軸最大,只須||MF1|﹣|MF2||最大,設(shè)F1(0,﹣)關(guān)于直線AB的對稱點為F1'(﹣2,﹣2),則直線F2F1′與直線的交點為所求M,

因為F2F1′的方程為:,聯(lián)立得M(1,﹣3)

又2a′=||MF1|﹣|MF2||=||MF1'|﹣|MF2||≤|F2F1'|

==2,故

故所求雙曲線方程為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖橢圓C的方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A是橢圓C的短軸左頂點,過A點作斜率為-1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為
9
2

(1)求橢圓C的方程;
(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:湖南省2007屆高三十校聯(lián)考第一次考試-文科數(shù)學 題型:038

如圖橢圓C的方程為,A是橢圓C的短軸左頂點,過A點作斜率為-1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為

(1)求橢圓C的方程;

(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2013學年湖北省荊門市高二(下)期末數(shù)學試卷(文科)(解析版) 題型:解答題

如圖橢圓C的方程為,A是橢圓C的短軸左頂點,過A點作斜率為-1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為
(1)求橢圓C的方程;
(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年湖南省十校高三3月聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖橢圓C的方程為,A是橢圓C的短軸左頂點,過A點作斜率為-1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為
(1)求橢圓C的方程;
(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

同步練習冊答案