已知a∈[-1,1],不等式x2+(a-4)x+4-2a>0恒成立,則x的取值范圍為(  )

A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞)

C.(-∞,1)∪(3,+∞) D.(1,3)

 

C

【解析】把原不等式的左端看成關于a的一次函數(shù),記f(a)=(x-2)a+x2-4x+4,則f(a)>0對于任意的a∈[-1,1]恒成立,易知只需f(-1)=x2-5x+6>0、,且f(1)=x2-3x+2>0、诩纯,聯(lián)立①②解得x<1或x>3.故選C.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

一個幾何體的三視圖如圖所示,其中俯視圖與側視圖均為半徑是2的圓,則這個幾何體的表面積是(  )

A.16π B.14π C.12π D.8π

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:選擇題

三段論推理“①矩形是平行四邊形;②三角形不是平行四邊形;③三角形不是矩形”中的小前提是(  )

A.① B.② C.③ D.①和②

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-2一元二次不等式及其解法(解析版) 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.

(1)求證:函數(shù)y=f(x)必有兩個不同的零點;

(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;

(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-2一元二次不等式及其解法(解析版) 題型:填空題

已知函數(shù)f(x)=x2+ax-1在區(qū)間[0,3]上有最小值-2,則實數(shù)a的值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-1不等關系與不等式(解析版) 題型:填空題

已知1≤lg(xy)≤4,-1≤lg≤2,則lg的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-1不等關系與不等式(解析版) 題型:填空題

已知實數(shù)a滿足ab2>a>ab,則實數(shù)b的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-5數(shù)列的綜合應用(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )

A.12 B.14 C.16 D.18

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-2等差數(shù)列及其前n項和(解析版) 題型:選擇題

在各項均不為零的等差數(shù)列{an}中,若-an+1=an-1(n≥2,n∈N*),則S2014的值為(  )

A.2013 B.2014 C.4026 D.4028

 

查看答案和解析>>

同步練習冊答案