已知橢圓
E:=1(a>b>o)的離心率e=,且經過點(,1),O為坐標原點.(Ⅰ)求橢圓E的標準方程;
(Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當∠PMQ=60°時,求直線PQ的方程.
科目:高中數(shù)學 來源:河南省鄭州市智林學校2011屆高三第一次月考理科數(shù)學試題 題型:044
已知橢圓E:=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點P是x軸上方橢圓E上的一點,且PF1⊥F1F2,|PF1|=,|PF2|=.
(Ⅰ)求橢圓E的方程和P點的坐標;
(Ⅱ)判斷以PF2為直徑的圓與以橢圓E的長軸為直徑的圓的位置關系;
(Ⅲ)若點G是橢圓C:=1(m>n>0)上的任意一點,F(xiàn)是橢圓C的一個焦點,探究以GF為直徑的圓與以橢圓C的長軸為直徑的圓的位置關系
.查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省高二上學期期末測試數(shù)學試卷 題型:解答題
(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長軸AB長為4,離心率e=,O為坐標原點,過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ,連結AQ延長交直線于點M,N為的中點.
(1)求橢圓的方程;
(2)證明:Q點在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長軸AB長為4,離心率e=,O為坐標原點,過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ,連結AQ延長交直線于點M,N為的中點.
(1)求橢圓的方程;
(2)證明:Q點在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,已知橢圓E:=1(a>b>0)的長軸長是短軸長的2倍,且過點C(2,1),點C關于原點O的對稱點為D.
(1)求橢圓E的方程;
(2)點P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請說明理由;
(3)平行于CD的直線l交橢圓E于M、N兩點,求△CMN面積的最大值,并求此時直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com