已知數(shù)列中,,前項(xiàng)的和為,對(duì)任意的,,,總成等差數(shù)列.
(1)求的值并猜想數(shù)列的通項(xiàng)公式
(2)證明:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的公差,等比數(shù)列公比為,且,,
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列,是否存在正整數(shù)(其中)使得和都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列滿足,(),是常數(shù).
(Ⅰ)當(dāng)時(shí),求及的值;
(Ⅱ)數(shù)列是否可能為等差數(shù)列?若可能,求出它的通項(xiàng)公式;若不可能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,點(diǎn)在函數(shù)的圖象上,其中
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是一個(gè)按照某種規(guī)律排列出來的三角形數(shù)陣
假設(shè)第行的第二個(gè)數(shù)為
(1)依次寫出第六行的所有6個(gè)數(shù)字(不必說明理由);
(2)寫出與的遞推關(guān)系(不必證明),并求出的通項(xiàng)公式
(3)設(shè),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和,且滿足.
(Ⅰ)計(jì)算的值,猜想的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列具有性質(zhì):①為整數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),
;當(dāng)為奇數(shù)時(shí),.
(1)若為偶數(shù),且成等差數(shù)列,求的值;
(2)設(shè)(且N),數(shù)列的前項(xiàng)和為,求證:;
(3)若為正整數(shù),求證:當(dāng)(N)時(shí),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)曲線:上的點(diǎn)到點(diǎn)的距離的最小值為,若,,
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:;
(3)是否存在常數(shù),使得對(duì),都有不等式:成立?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列的前n項(xiàng)和,且是與1的等差中項(xiàng)。
(1)求數(shù)列和數(shù)列的通項(xiàng)公式;
(2)若,求
(3)若,是否存在,使得并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com