19.如圖是一幾何體的直觀圖、主視圖和俯視圖,則該幾何體的側(cè)視圖是( 。
A.B.C.D.

分析 由正視圖可知正視圖的方向是由D向A的方向看,所以側(cè)視圖應(yīng)由B向A的方向看.由正視圖和俯視圖可知底面ABCD為邊長(zhǎng)為4的正方形,PA⊥底面ABCD,EB⊥底面ABCD,BE=$\frac{1}{2}PA$=2.即可得出結(jié)論.

解答 解:由正視圖可知正視圖的方向是由D向A的方向看,所以側(cè)視圖應(yīng)由B向A的方向看.由正視圖和俯視圖可知底面ABCD為邊長(zhǎng)為4的正方形,PA⊥底面ABCD,EB⊥底面ABCD,BE=$\frac{1}{2}PA$=2.所以側(cè)視圖應(yīng)為B選項(xiàng).即B正確.
故選B.

點(diǎn)評(píng) 本題考查三視圖,考查數(shù)形結(jié)合的數(shù)學(xué)思想,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.曲線C:y2=12x,直線l:y=k(x-4),l與C交于兩點(diǎn)A(x1,y1),B(x2,y2).
(1)求x1x2+y1y2
(2)若$|{AB}|=4\sqrt{42}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2n=4(a1+a3+…+a2n-1),a1•a2•a3=27,則a5=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=$\frac{1}{2}$.則下列結(jié)論中正確的個(gè)數(shù)為( 。
①AC⊥BE;
②EF∥平面ABCD;
③三棱錐A-BEF的體積為定值;
④△AEF的面積與△BEF的面積相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$\overrightarrow{a}$、$\overrightarrow$均為單位向量,(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=-$\frac{3\sqrt{3}}{2}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.函數(shù)f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值為4,其圖象相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈(0,π),則f($\frac{α}{2}$)=3,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.?dāng)S三顆骰子(各面上分別標(biāo)有數(shù)字1至6的質(zhì)地均勻的正方體玩具),恰有一顆骰子擲出的點(diǎn)數(shù)可以被3整除的概率為(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{8}{27}$D.$\frac{19}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,PA=AB=BC=$\frac{1}{2}$CD.
(Ⅰ)求證:面PAD⊥面PAC;
(Ⅱ)若AB=1,求三棱錐D-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.不等式$\frac{1}{x-1}$<-1的解集為(0,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案