分析 令c=$\frac{\root{3}{3}-\root{3}{2}}{3-2}$,d=$\frac{\root{3}{6}-\root{3}{5}}{6-5}$,則c表示(3,$\root{3}{3}$)與(2,$\root{3}{2}$)兩點(diǎn)連線的斜率,d表示(6,$\root{3}{6}$)與(5,$\root{3}{5}$)兩點(diǎn)連線的斜率,由y=$\root{3}{x}$在(0,+∞)上為凸增函數(shù),可得結(jié)論.
解答 解:若c=$\root{3}{3}-\root{3}{2}$,d=$\root{3}{6}-\root{3}{5}$,
則c=$\frac{\root{3}{3}-\root{3}{2}}{3-2}$,d=$\frac{\root{3}{6}-\root{3}{5}}{6-5}$,
即c表示(3,$\root{3}{3}$)與(2,$\root{3}{2}$)兩點(diǎn)連線的斜率,
d表示(6,$\root{3}{6}$)與(5,$\root{3}{5}$)兩點(diǎn)連線的斜率,
由y=$\root{3}{x}$在(0,+∞)上為凸增函數(shù),
故$\frac{\root{3}{3}-\root{3}{2}}{3-2}$>$\frac{\root{3}{6}-\root{3}{5}}{6-5}$
故答案為:>
點(diǎn)評 本題考查的知識點(diǎn)是類比推理,冪函數(shù)的圖象和性質(zhì),斜率公式,轉(zhuǎn)化思想,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com