20.已知某一隨機(jī)變量X的概率分布表如表,且E(X)=3,則V(X)=4.2.
X0a6
P0.30.6b

分析 根據(jù)概率和為1求得b的值,根據(jù)數(shù)學(xué)期望值求得a的值,再計(jì)算方差即可.

解答 解:由0.3+0.6+b=1得,b=0.1,
由E(X)=3,得:
0×0.3+0.6a+6×0.1=3,
解得a=4,
所以D(X)=(0-3)2×0.3+(4-3)2×0.6+(6-3)2×0.1=4.2.
故答案為:4.2.

點(diǎn)評(píng) 本題考查了離散型隨機(jī)變量的分布列、期望與方差的計(jì)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,1),設(shè)u=$\overrightarrow{a}$+k$\overrightarrow$,v=2$\overrightarrow{a}$-$\overrightarrow$,若u∥v,則實(shí)數(shù)k的值為( 。
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,bn=$\frac{1}{{a}_{n}\sqrt{{a}_{n-1}}+{a}_{n-1}\sqrt{{a}_{n}}}$(n≥2,n∈N*),數(shù)列{bn}前n項(xiàng)和為Tn
(3)若數(shù)列{cn}滿足lgc1=$\frac{1}{3}$,lgcn=$\frac{{a}_{n-1}}{{3}^{n}}$(n≥2,n∈N*),試問是否存在正整數(shù)p,q,(其中1<p<q),使c1,cp,cq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合M={a,b,c},N={d,e},則從集合M到N可以建立不同的映射個(gè)數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,2),B(1,1),C(1,3).若△ABC在一個(gè)切變變換T作用下變?yōu)椤鰽1B1C1,其中B(1,1)在變換T作用下變?yōu)辄c(diǎn)B1(1,-1).
(1)求切變變換T所對(duì)應(yīng)的矩陣M;
(2)將△A1B1C1繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°后得到△A2B2C2.求B1變化后的對(duì)應(yīng)點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某年孝感高中校園歌手大賽后,甲、乙、丙、丁四名同學(xué)猜測(cè)他們之中誰能獲獎(jiǎng).
甲說:“如果我能獲獎(jiǎng),那么乙也能獲獎(jiǎng).”
乙說:“如果我能獲獎(jiǎng),那么丙也能獲獎(jiǎng).”
丙說:“如果丁沒獲獎(jiǎng),那么我也不能獲獎(jiǎng).”實(shí)際上,他們之中只有一個(gè)人沒有獲獎(jiǎng),并且甲、乙、丙說的話都是真的.那么沒能獲獎(jiǎng)的同學(xué)是甲.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二階矩陣M有特征值λ=8及其對(duì)應(yīng)的一個(gè)特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)A(-1,2)變換成A′(-2,4).
(1)求矩陣M;
(2)設(shè)直線l在M-1對(duì)應(yīng)的變換作用下得到了直線m:x-y=6,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知a=$\sqrt{3}-\sqrt{2}$,b=$\sqrt{6}-\sqrt{5}$,要比較a與b的大小,某同學(xué)想到了用斜率的方法,即將a,b改寫為a=$\frac{{\sqrt{3}-\sqrt{2}}}{3-2}$,b=$\frac{{\sqrt{6}-\sqrt{5}}}{6-5}$,通過畫圖,利用斜率發(fā)現(xiàn)了它們的大小關(guān)系.若c=$\root{3}{3}-\root{3}{2}$,d=$\root{3}{6}-\root{3}{5}$,則c> d.(在“<,=,>”中選一個(gè)填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”的第二步是(  )
A.證明假設(shè)n=k(k≥1且k∈N)時(shí)正確,可推出n=k+1正確
B.證明假設(shè)n=2k+1(k≥1且k∈N)時(shí)正確,可推出n=2k+3正確
C.證明假設(shè)n=2k-1(k≥1且k∈N)時(shí)正確,可推出n=2k+1正確
D.證明假設(shè)n≤k(k≥1且k∈N)時(shí)正確,可推出n=k+2時(shí)正確

查看答案和解析>>

同步練習(xí)冊(cè)答案