(2013•杭州一模)已知F1,F(xiàn)2分別是雙曲線C:
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>0,b>0)
的左右焦點(diǎn),以F1F2為直徑的圓與雙曲線C在第二象限的交點(diǎn)為P,若雙曲線的離心率為5,則cos∠PF2F1等于( 。
分析:設(shè)|PF1|=n,|PF2|=m,則由雙曲線的定義可得 m-n=2a ①,再由m2+n2=4c2 ②,以及
c
a
=5 可得 m=8a,故cos∠PF2F1 =
|PF2|
| F12|
=
m
2c
,運(yùn)算求得結(jié)果.
解答:解:設(shè)|PF1|=n,|PF2|=m,則由雙曲線的定義可得 m-n=2a ①,且三角形PF1F2為直角三角形,
故有m2+n2=4c2 ②.再由
c
a
=5 可得 c=5a.
把①和②聯(lián)立方程組解得 m=8a,故cos∠PF2F1 =
|PF2|
| F12|
=
m
2c
=
8a
2×5a
=
4
5
,
故選C.
點(diǎn)評(píng):本題主要考查雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)若實(shí)數(shù)x,y滿足不等式組
y-x≥0
x+y-7≤0
,則2x+y的最大值為
21
2
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n-m的最小值為
1
3
,則實(shí)數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)等差數(shù)列{an}滿足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1,公差d∈(-1,0).若當(dāng)且僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,則首項(xiàng)a1取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)a∈R,則“a=4”是“直線l1:ax+2y-3=0與直線l2:2x+y-a=0平行”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),則必定有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案