(本小題滿分12分)
已知p:方程x2+mx+1=0有兩個不等的負實根,q:方程4x2+4(m-2)x+1=0無實根。若pq為真,pq為假。求實數(shù)m的取值范圍。

解析:由題意p,q中有且僅有一為真,一為假,                   2分
pm>2,q<01<m<3,   5分
pq真,則1<m≤2;若pq假,則m≥3;
10分
綜上所述:m∈(1,2]∪[3,+∞).        12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若且對任意實數(shù)均有成立,求表達式;
(2)在(1)的條件下,當時,是單調(diào)函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題12分)已知二次函數(shù).
(1)判斷命題:“對于任意的R(R為實數(shù)集),方程必有實數(shù)根”的真假,并寫出判斷過程
(2),若在區(qū)間內(nèi)各有一個零點.求實數(shù)a的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的值域G
(2)若對于G內(nèi)的所有實數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)對一切實數(shù)都有成立,且.
(1)求的值。                   
(2)求的解析式。               
(3)已知,設(shè)P:當時,不等式 恒成立;Q:當時,是單調(diào)函數(shù)。如果滿足P成立的的集合記為,滿足Q成立的的集合記為,求為全集)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)     
(1)若,求的值;
(2)若對任意,恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
(1)判斷函數(shù)的奇偶性;
2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)是否存在實數(shù),使函數(shù)上的奇函數(shù),若不存在,說明理由,若存在實數(shù),求函數(shù)的值域;
(2)探索函數(shù)的單調(diào)性,并利用定義加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)已知不等式的解集為;
(1)求的值;
(2)若不等式上恒成立,求實數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案