10.已知集合I={0,-1,2,-3,-4},集合M={0,-1,2},N={0,-3,-4},則N∩(∁IM)=( 。
A.{0}B.{-3,-4}C.{-1,-2}D.

分析 先求出CIM={-3,-4},由此能求出(CIM)∩N.

解答 解:∵全集I={0,-1,2,-3,-4},集合M={0,-1,2},N={0,-3,-4},
∴CIM={-3,-4},
∴(CIM)∩N={-3,-4}.
故選:B.

點(diǎn)評(píng) 本題考查集合的交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,若$\frac{cosC}{cosB}=\frac{2a-c}$,則B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.仿照我國南宋數(shù)學(xué)楊輝所著的《詳解九章算術(shù)》一書中的“楊輝三角形”,得到如下數(shù)表:

該數(shù)表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)為2017×22014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,且公差和公比都是2,若對(duì)滿足m+n≤5的任意正整數(shù)m,n,均有am+an=am+n成立.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令${b_n}=\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.現(xiàn)有4張卡片,正面分別標(biāo)有1,2,3,4,背面完全相同.將卡片洗勻,背面向上放置,甲、乙二人輪流抽取卡片,每人每次抽取一張,抽取后不放回,甲先抽.若二人約定,先抽到標(biāo)有偶數(shù)的卡片者獲勝,則甲獲勝的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為N,過點(diǎn)F作直線與此拋物線交于A、B兩點(diǎn),若$\overrightarrow{NB}•\overrightarrow{AB}$=0,且|$\overrightarrow{AF}$|-|$\overrightarrow{BF}$|=4,則p的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),|AF1|=3|BF1|,若cos∠AF2B=$\frac{3}{5}$,則橢圓E的離心率為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)Sn等差數(shù)列{an}的前n項(xiàng)之和,若S2014=2014a,S2015=2015b(a,b為常數(shù)),則S2016=2016(2b-a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,AB=3,AC=4.若△ABC的面積為$3\sqrt{3}$,則BC的長是$\sqrt{13}$或$\sqrt{37}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案