已知全集U=R,集合A={x||x|<1},B={x|x>-
1
2
}
,則(∁UB)∩A=
 
考點:交、并、補(bǔ)集的混合運算
專題:集合
分析:求出集合的等價條件,利用集合的基本運算進(jìn)行計算即可.
解答: 解:A={x|-1<x<1},
UB={x|x≤-
1
2
},
則(∁UB)∩A={x|-1<x≤-
1
2
},
故答案為:{x|-1<x≤-
1
2
},
點評:本題主要考查集合的基本運算,要求熟練掌握集合的交,并,補(bǔ)運算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題;
①當(dāng)?x>1時,lgx+
1
lgx
≥2;
②m+1>n是m>n成立的充分不必要條件;
③函數(shù)y=ax的圖象可以由函數(shù)y=4ax(其中a>0且a≠1)平移得到;
④對于任意△ABC角A,B,C滿足:sin2A=sin2B+sin2C-2sinBsinCcosA;
⑤定義:如果對任意一個三角形,只要它的三邊長a,b,c都在函數(shù)y=f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱y=f(x)為“三角形型函數(shù)”.函數(shù)h(x)=lnx,x∈[2,+∞)是“三角形型函數(shù)”.
其中正確命題的序嗎為
 
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)
圖象的兩條相鄰的對稱軸之間的距離為
π
2
,且該函數(shù)圖象關(guān)于點(x0,0)成中心對稱,x0∈[0,
π
2
]
,則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(6n-2)2+(2m-2)2
2
5
,求m+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為實數(shù)的數(shù)列{an}為等比數(shù)列,且滿足a1+a2=12,a2a4=1則a1=( 。
A、9或
1
16
B、
1
9
或16
C、
1
9
1
16
D、9或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1+i
1-i
在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是( 。
A、(0,1)
B、(0,-1)
C、(1,0)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an},公差d=2,若a2,a4,a8成等比數(shù)列,則{an}的前n項和Sn等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.把所有由“一階比增函數(shù)”組成的集合記為A1,把所有由“二階比增函數(shù)”組成的集合記為A2
(1)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈A1且f(x)∉A2,求實數(shù)h的取值范圍
(2)已知f(x)∈A2,且存在常數(shù)k,使得對任意的x∈(0,+∞),都有f(x)<k,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(1-x)+log3(x+5).
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案