【題目】在矩形中,,,、、、分別為矩形四條邊的中點,以,所在直線分別為軸建立直角坐標系(如圖所示).若、分別在線段上.且.

(Ⅰ)求證:直線的交點總在橢圓上;

(Ⅱ)若為曲線上兩點,且直線與直線的斜率之積為,求證:直線過定點.

【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析;

【解析】

)根據(jù)比值關系寫出,再聯(lián)合寫出直線,再求出交點坐標,即可得證。

)設出直線,聯(lián)立方程,再利用斜率之積為,求出,即可得出定點.

解(Ⅰ)∵,∴,

則直線的方程為

則直線的方程為

聯(lián)立①②: 解得,

,∴直線的交點在橢圓上;

(Ⅱ)①當直線的斜率不存在時,設

,,不合題意,

②當直線的斜率存在時,設,.

聯(lián)立方程

,,

,

,代入上式得

∴直線過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,,若點A為函數(shù)上的任意一點,點B為函數(shù)上的任意一點.

(1)求A,B兩點之間距離的最小值;

(2)若A,B為函數(shù)與函數(shù)公切線的兩個切點,求證:這樣的點B有且僅有兩個,且滿足條件的兩個點B的橫坐標互為倒數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年將在日本東京舉辦第屆夏季奧林匹克運動會,簡稱為“奧運會”,為了解不同年齡的人對“奧運會”的關注程度,某機構(gòu)隨機抽取了年齡在歲之間的 人進行調(diào)查,經(jīng)統(tǒng)計,“年輕人”與“中老年人”的人數(shù)之比為.

關注

不關注

合計

年輕人

中老年人

合計

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷是否有的把握認為是否關注“奧運會”與年齡段有關;

(2)現(xiàn)采用分層抽樣的方法從中老年人中選取人進行問卷調(diào)查.若再從這人中選取人進行面對面詢問,求事件“選取的人中至少有人關注奧運會”的概率.

附參考公式:,其中臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數(shù)量與日俱增.由于該小區(qū)建成時間較早,沒有配套建造地下停車場,小區(qū)內(nèi)無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計了近五年小區(qū)登記在冊的私家車數(shù)量(累計值,如147表示2016年小區(qū)登記在冊的所有車輛數(shù),其余意義相同),得到如下數(shù)據(jù):

編號

1

2

3

4

5

年份

2014

2015

2016

2017

2018

數(shù)量(單位:輛)

37

104

147

196

216

1)若私家車的數(shù)量與年份編號滿足線性相關關系,求關于的線性回歸方程,并預測2020年該小區(qū)的私家車數(shù)量;

2)小區(qū)于2018年底完成了基礎設施改造,劃設了120個停車位.為解決小區(qū)車輛亂停亂放的問題,加強小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進入小區(qū).由于車位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡競拍的方式將車位對業(yè)主出租,租期一年,競拍方案如下:①截至2018年己登記在冊的私家車業(yè)主擁有競拍資格;②每車至多中請一個車位,由車主在競拍網(wǎng)站上提出申請并給出自己的報價;③根據(jù)物價部門的規(guī)定,競價不得超過1200元;④申請階段截止后,將所有申請的業(yè)主報價自高到低排列,排在前120位的業(yè)主以其報價成交;⑤若最后出現(xiàn)并列的報價,則以提出申請的時間在前的業(yè)主成交,為預測本次競拍的成交最低價,物業(yè)公司隨機抽取了有競拍資格的40位業(yè)主,進行了競拍意向的調(diào)查,并對他們的擬報競價進行了統(tǒng)計,得到如圖頻率分布直方圖:

i)求所抽取的業(yè)主中有意向競拍報價不低于1000元的人數(shù);

ii)如果所有符合條件的車主均參與競拍,利用樣本估計總體的思想,請你據(jù)此預測至少需要報價多少元才能競拍車位成功?(精確到整數(shù))

參考公式及數(shù)據(jù):對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計分別為:;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于、兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標為,記直線、的斜率分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機,若要擊落敵機,需命中機首2次或命中機中3次或命中機尾1次,已知A每次射擊,命中機首、機中、機尾的概率分別為0.2、0.4、0.1,未命中敵機的概率為0.3,且各次射擊相互獨立。若A至多射擊兩次,則他能擊落敵機的概率為( )

A. 0.23 B. 0.2 C. 0.16 D. 0.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點軸上,中心在坐標原點,長軸長為4,短軸長為.

1)求橢圓的標準方程;

2)是否存在過的直線,使得直線與橢圓交于,?若存在,請求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案