不等式
1
x
-x<0
成立的充分不必要條件是(  )
A.-1<x<0或x>1B.x<-1或0<x<1
C.x>-1D.x>1
不等式
1
x
-x<0
可以化為
1-x2
x
<0
,等價于下面的兩個不等式組:
1-x2>0
x<0
①或
1-x2<0
x>0

解得
-1<x<1
x<0
①或
x<-1或x>1
x>0

∴-1<x<0,或x>1.
∴不等式
1
x
-x<0
的解集為A={x|-1<x<0,或x>1}.
 使其成立的充分不必要條件x的取值集合應(yīng)為A的真子集.
只有D符合.
故選D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)選修4-4:矩陣與變換
已知曲線C1:y=
1
x
繞原點逆時針旋轉(zhuǎn)45°后可得到曲線C2:y2-x2=2,
(I)求由曲線C1變換到曲線C2對應(yīng)的矩陣M1;    
(II)若矩陣M2=
20
03
,求曲線C1依次經(jīng)過矩陣M1,M2對應(yīng)的變換T1,T2變換后得到的曲線方程.
(2)選修4-4:坐標系與參數(shù)方程
已知直線l的極坐標方程是ρcosθ+ρsinθ-1=0.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在曲線C:
x=-1+cosθ
y=sinθ
(θ為參數(shù))上求一點,使它到直線l的距離最小,并求出該點坐標和最小距離.
(3)(選修4-5:不等式選講)
將12cm長的細鐵線截成三條長度分別為a、b、c的線段,
(I)求以a、b、c為長、寬、高的長方體的體積的最大值;
(II)若這三條線段分別圍成三個正三角形,求這三個正三角形面積和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•廣東三模)以下三個命題:①關(guān)于x的不等式
1
x
≥1
的解為(-∞,1]②曲線y=2sin2x與直線x=0,x=
4
及x軸圍成的圖形面積為s1,曲線y=
1
π
4-x2
與直線x=0,x=2及x軸圍成的圖形面積為s2,則s1+s2=2③直線x-3y=0總在函數(shù)y=lnx圖象的上方其中真命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:廣東三模 題型:單選題

以下三個命題:①關(guān)于x的不等式
1
x
≥1
的解為(-∞,1]②曲線y=2sin2x與直線x=0,x=
4
及x軸圍成的圖形面積為s1,曲線y=
1
π
4-x2
與直線x=0,x=2及x軸圍成的圖形面積為s2,則s1+s2=2③直線x-3y=0總在函數(shù)y=lnx圖象的上方其中真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案