19.已知雙曲線${x}^{2}-\frac{{y}^{2}}{3}=1$的離心率為$\frac{m}{2}$,且拋物線y2=mx的焦點(diǎn)為F,點(diǎn)P(3,y0)(y0>0)在此拋物線上,M為線段PF的中點(diǎn),則點(diǎn)M到該拋物線的準(zhǔn)線的距離為( 。
A.3B.2C.$\frac{5}{2}$D.1

分析 依題意,可求得雙曲線x2-$\frac{{y}^{2}}{3}$=1的離心率e=2,于是知m=4,從而可求拋物線y2=4x的焦點(diǎn)F(1,0),準(zhǔn)線方程為x=-1,繼而可得點(diǎn)M的橫坐標(biāo)為2,從而得到答案.

解答 解:∵雙曲線${x}^{2}-\frac{{y}^{2}}{3}=1$的離心率為$\frac{\sqrt{1+3}}{1}$=$\frac{m}{2}$,
∴m=4,
∴拋物線y2=mx=4x的焦點(diǎn)F(1,0),準(zhǔn)線方程為x=-1;
又點(diǎn)P(3,y0)在此拋物線上,M為線段PF的中點(diǎn),
∴點(diǎn)M的橫坐標(biāo)為:$\frac{1+3}{2}=2$,
∴點(diǎn)M到該拋物線的準(zhǔn)線的距離d=2-(-1)=3,
故選:A.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì),考查雙曲線的離心率,考查等價(jià)轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an},{bn},Sn為{an}的前n項(xiàng)和,且滿(mǎn)足Sn+1=Sn+an+2n+2,若a1=b1=2,bn+1=2bn+1,n∈N*
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)令cn=$\frac{{3{a_n}}}{{n({{b_n}+1})}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,菱ABCD與四邊形BDEF相交于BD,∠ABC=120°,BF⊥平面ABCD,DE∥BF,BF=2DE,AF⊥FC,M為CF的中點(diǎn),AC∩BD=G.
(I)求證:GM∥平面CDE;
(II)求證:平面ACE⊥平面ACF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求證:如果a>b>0,c>d>0,那么ac>bd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.隨著大數(shù)據(jù)統(tǒng)計(jì)的廣泛應(yīng)用,給人們的出行帶來(lái)了越來(lái)越多的方便.郭叔一家計(jì)劃在8月11日至8月20日暑假期間游覽上海Disney主題公園.通過(guò)上網(wǎng)搜索旅游局的統(tǒng)計(jì)數(shù)據(jù),該Disney主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門(mén)核定的最大瞬時(shí)容量之比,40%以下為舒適,40%-60%為一般,60%以上為擁擠)情況如圖所示.郭叔預(yù)計(jì)隨機(jī)的在8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽2天.

(Ⅰ)求郭叔連續(xù)兩天都遇上擁擠的概率;
(Ⅱ)設(shè)X是郭叔游覽期間遇上舒適的天數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開(kāi)始連續(xù)三天游覽舒適度的方差最大?(直接寫(xiě)出結(jié)論不要求證明,計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.下列四個(gè)結(jié)論中假命題的序號(hào)是①④.
①垂直于同一直線的兩條直線互相平行;
②平行于同一直線的兩直線平行;
③若直線a,b,c滿(mǎn)足a∥b,b⊥c,則a⊥c;
④若直線a,b是異面直線,則與a,b都相交的兩條直線是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知扇形的周長(zhǎng)是5cm,面積是$\frac{3}{2}$cm2,則扇形的中心角的弧度數(shù)是( 。
A.3B.$\frac{4}{3}$C.$3或\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a∈(0,+∞),不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,可推廣為x+$\frac{a}{{x}^{n}}$≥n+1,則a的值為(  )
A.2nB.n2C.22(n-1)D.nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)=sin(2x+φ)(φ是常數(shù)),若$f(0)=f(\frac{2π}{3})$,則$f(\frac{π}{12})$,$f(\frac{4π}{3})$,$f(\frac{π}{2})$之間的大小關(guān)系可能是( 。
A.$f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$B.f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$)C.$f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$D.$f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$

查看答案和解析>>

同步練習(xí)冊(cè)答案