【題目】在直角坐標系,已知一動圓經(jīng)過點且在軸上截得的弦長為4,設(shè)動圓圓心的軌跡為曲線

1求曲線的方程

2過點作互相垂直的兩條直線,與曲線交于,兩點與曲線交于兩點,線段,的中點分別為,求證:直線過定點并求出定點的坐標

【答案】1;2證明見解析;

【解析】

試題分析:1設(shè)圓心坐標,利用圓心的半徑相等可建立等式,求得曲線的方程;2易知兩直線的斜率都存在,設(shè)直線斜率可得直線方程,與拋物線方程聯(lián)立可得點坐標,同理可得的坐標,得直線的方程,得其過定點,且得出定點坐標

試題解析:1設(shè)圓心依題意有

,即得,

曲線的方程為

2易知直線,的斜率存在且不為0,設(shè)直線的斜率為,,,

則直線,

,

,,

同理得

,直線的方程為;

直線的斜率為,

直線的方程為,

直線過定點,其坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若時,有成立.

(1)判斷上的單調(diào)性,并用定義證明;

(2)解不等式;

(3)若對所有的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)a>0a≠1)是奇函數(shù).

1)求常數(shù)k的值;

2)若已知f1=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙二人去看望高中數(shù)學張老師,期間他們做了一個游戲,張老師的生日是日,張老師把告訴了甲,把告訴了乙,然后張老師列出來如下10個日期供選擇: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲說“我不知道,但你一定也不知道”,乙聽了甲的話后,說“本來我不知道,但現(xiàn)在我知道了”,甲接著說,“哦,現(xiàn)在我也知道了”.請問張老師的生日是_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解重慶市高中學生在面對新高考模式“3+1+2”的科目選擇中,物理與歷史的二選一是否與性別有關(guān),某高中隨機對該校50名高一學生進行了問卷調(diào)查得到相關(guān)數(shù)據(jù)如下列聯(lián)表:

選物理

選歷史

合計

男生

5

女生

10

合計

己知在這50人中隨機抽取1人,抽到選物理的人的概率為。

1)請將上面的列聯(lián)表補充完整,并判斷是否有99.5%的把握認為物理與歷史的二選一與性別有關(guān)?

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

2)己知在選物理的10位女生中有3人選擇了化學、地理,有5人選擇了化學、生物,有2人選擇了生物、地理,現(xiàn)從這10人中抽取3人進行更詳細的學科意愿調(diào)查,記抽到的3人中選擇化學的有X人,求隨機變量X的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,恒成立,求實數(shù)的取值范圍;

(2)證明:當時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若存在實數(shù),使得,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)上的單調(diào)遞增區(qū)間;

2)將函數(shù)的圖象向左平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象.求證:存在無窮多個互不相同的整數(shù),使得.

查看答案和解析>>

同步練習冊答案