【題目】下列說(shuō)法中錯(cuò)誤的是__________(填序號(hào))
①命題“,有”的否定是“”,有”;
②已知, , ,則的最小值為;
③設(shè),命題“若,則”的否命題是真命題;
④已知, ,若命題為真命題,則的取值范圍是.
【答案】①④
【解析】①命題“,有”的否定是“x1,x2∈M,x1≠x2,有[f(x1)﹣f(x2)](x2﹣x1)≤0”,故不正確;
②已知a>0,b>0,a+b=1,則=()(a+b)=5+≥5+2即的最小值為,正確;
③設(shè)x,y∈R,命題“若xy=0,則x2+y2=0”的否命題是“若xy≠0,則x2+y2≠0”,是真命題,正確;
④已知p:x2+2x﹣3>0,q: >1,若命題(¬q)∧p為真命題,則¬q與p為真命題,即,
則x的取值范圍是(﹣∞,﹣3)∪(1,2]∪[3,+∞),故不正確.
故答案為:①④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)的動(dòng)直線(xiàn)與圓: 交于兩點(diǎn).
(1)若,求直線(xiàn)的方程;
(2)軸上是否存在定點(diǎn),使得當(dāng)變動(dòng)時(shí),總有直線(xiàn)的斜率之和為0?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高中男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
(1)估計(jì)該校的100名同學(xué)的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點(diǎn)值作代表);
(2)若要從體重在, , 三組內(nèi)的男生中,用分層抽樣的方法選取6人組成一個(gè)活動(dòng)隊(duì),再?gòu)倪@6人中選2人當(dāng)正副隊(duì)長(zhǎng),求這2人中至少有1人體重在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線(xiàn)垂直于軸,試判斷直線(xiàn)的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求寫(xiě)出下列命題,并判斷真假:
(1)命題:“在中,若則”的逆命題;
(2)命題:“若兩個(gè)數(shù)的和為有理數(shù),則這兩個(gè)數(shù)都是有理數(shù)。”的否命題;
(3)命題:“若a≠0且b≠0,則ab≠0”的逆否命題;
(4)命題:“a=0或b=0,則a2+b2=0”的逆否命題;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)做促銷(xiāo)活動(dòng),凡是一家三口一起來(lái)商場(chǎng)購(gòu)物的家庭,均可參加返現(xiàn)活動(dòng),活動(dòng)規(guī)則如下:商家在箱中裝入20個(gè)大小相同的球,其中6個(gè)是紅球,其余都是黑球;每個(gè)家庭只能參加一次活動(dòng),參加活動(dòng)的三口人,每人從中任取一球,只能取一次,且每人取球后均放回;若取到黑球則獲得4元返現(xiàn)金,若取到紅球則獲得12元返現(xiàn)金.若某家庭參與了該活動(dòng),則該家庭獲得的返現(xiàn)金額的期望是( ).
A. 22.4 B. 21.6 C. 20.8 D. 19.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線(xiàn)的焦點(diǎn).
(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,﹣3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線(xiàn)PQ兩側(cè)的動(dòng)點(diǎn),若直線(xiàn)AB的斜率為,求四邊形APBQ面積的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中, 和是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com