已知等差數(shù)列{an}中,a3+a7<2a6且a3,a7是方程x2-18x+65=0的兩根,數(shù)列{bn}的前項和Sn=1-bn。
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項的和Tn,并證明
解:(1)由a3+a7=2a5<2a6得a5<a6,
所以數(shù)列{an}是遞增數(shù)列
所以a3<a7
由x2-18x+65=0解得a3=5,a7=13
公差,
所以an=a3+(n-3)d=2n-1(n∈N*)
由Sn=1-bn得,當n=1時,
當n≥2時,bn=Sn-Sn-1,得
所以{bn}是首項為,公比為的等比數(shù)列,
所以
(2)證明:由(1)得,
所以由錯位相減法得
因為
所以{Tn}是遞增數(shù)列,所以
。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案