(滿分20分)本題有2小題,第1小題12分,第2小題8分.
已知數(shù)列{}和{}滿足:對(duì)于任何,有,為非零常數(shù)),且
(1)求數(shù)列{}和{}的通項(xiàng)公式;
(2)若的等差中項(xiàng),試求的值,并研究:對(duì)任意的,是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.

(1)【解一】由得,

,
所以,{}是首項(xiàng)為1,公比為的等比數(shù)列,.…………………………….5分
,得

所以,當(dāng)時(shí),……………………………………………….6分
上式對(duì)顯然成立.………………………………………………………………………..1分
【解二】猜測(cè),并用數(shù)學(xué)歸納法證明…………………………………………….5分
的求法如【解一】  ………………………………………………………………………..7分
【解三】猜測(cè),并用數(shù)學(xué)歸納法證明………………………….7分
  …………………………………………………………………..5分
(2)當(dāng)時(shí),不是的等差中項(xiàng),不合題意;……………………………….1分
當(dāng)時(shí),由,
(可解得)..…………………………………………2分
對(duì)任意的,的等差中項(xiàng). .………………………………….2分
證明:
,                    .………………………………….3分
即,對(duì)任意的,的等差中項(xiàng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

:已知數(shù)列的前n項(xiàng)和為滿足,
猜想數(shù)列的單調(diào)性,并證明你的結(jié)論;
(Ⅱ) 對(duì)于數(shù)列若存在常數(shù)M>0,對(duì)任意的,恒有            ,,  則稱(chēng)數(shù)列為B-數(shù)列。問(wèn)數(shù)列是B-數(shù)列嗎?   并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿足,則 的值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)數(shù)列為等差數(shù)列,前項(xiàng)和為,已知,
(Ⅰ)求 的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正項(xiàng)數(shù)列滿足:時(shí),。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和為,是否存在正整數(shù)m,使得對(duì)任意的,恒成立?若存在,求出所有的正整數(shù)m;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.若一個(gè)等差數(shù)列前3項(xiàng)的和為34,最后3項(xiàng)的和為146,且所有項(xiàng)的和為390,
則這個(gè)數(shù)列有                                                      (   )
A.13項(xiàng)B.12項(xiàng)C.11項(xiàng)D.10項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列2010,2011,1,-2010,-2011,…,這個(gè)數(shù)列的特點(diǎn)是從第二項(xiàng)起,每一項(xiàng)都等于它的
前后兩項(xiàng)之和,則這個(gè)數(shù)列的前2012項(xiàng)之和S2012等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖3所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,
它們是由整數(shù)的倒數(shù)組成的,第行有個(gè)數(shù)且兩端的數(shù)均為,每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如,,,…,則第7行第4個(gè)數(shù)(從左往右數(shù))為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將正方形分割成個(gè)全等的小正方形(圖1,圖2分別給出了的情形),在每個(gè)小正方形的頂點(diǎn)各放置一個(gè)數(shù),使位于正方形的四邊及平行于某邊的任一直線上的數(shù)都分別依次成等差數(shù)列,若頂點(diǎn)處的四個(gè)數(shù)互不相同且和為1,記所有頂點(diǎn)上的數(shù)之和為,則
A.4         B.6      C.       . 

查看答案和解析>>

同步練習(xí)冊(cè)答案