如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-2是函數(shù)y=f(x)的極值點(diǎn);
②1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-2,2)上單調(diào)遞增.
則正確命題的序號(hào)是   
【答案】分析:根據(jù)導(dǎo)函數(shù)圖象可判定導(dǎo)函數(shù)的符號(hào),從而確定函數(shù)的單調(diào)性,得到極值點(diǎn),以及根據(jù)導(dǎo)數(shù)的幾何意義可知在某點(diǎn)處的導(dǎo)數(shù)即為在該點(diǎn)處的切線斜率.
解答:解:根據(jù)導(dǎo)函數(shù)圖象可知當(dāng)x∈(-∞,-2)時(shí),f'(x)<0,在x∈(-2,+∞)時(shí),f'(x)≥0
則函數(shù)y=f(x)在(-∞,-2)上單調(diào)遞減,在(-2,+∞)上單調(diào)遞增,
故y=f(x)在區(qū)間(-2,2)上單調(diào)遞增正確,即④正確
而在x=-2處左側(cè)單調(diào)遞減,右側(cè)單調(diào)遞增,則-2是函數(shù)y=f(x)的極小值點(diǎn),故①正確
∵函數(shù)y=f(x)在(-∞,-2)上單調(diào)遞減,在(-2,+∞)上單調(diào)遞增
∴當(dāng)x=-2處函數(shù)取最小值,1不是函數(shù)y=f(x)的最小值點(diǎn),故②不正確;
∵函數(shù)y=f(x)在x=0處的導(dǎo)數(shù)大于0
∴y=f(x)在x=0處切線的斜率大于零,故③不正確
故答案為:①④
點(diǎn)評(píng):本題主要考查了導(dǎo)函數(shù)圖象與函數(shù)的性質(zhì)的關(guān)系,以及函數(shù)的單調(diào)性、極值、和切線的斜率等有關(guān)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、如圖是函數(shù)y=f(x)的圖象,則下列說(shuō)法正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-2是函數(shù)y=f(x)的極值點(diǎn);
②1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-2,2)上單調(diào)遞增.
則正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,下列說(shuō)法錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•茂名一模)如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-3是函數(shù)y=f(x)的極值點(diǎn);
②-1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-3,1)上單調(diào)遞增.
則正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,下列說(shuō)法正確的是
 
.   
①1是函數(shù)y=f(x)的極值點(diǎn);
②-2是函數(shù)y=f(x)的極小值點(diǎn)
③y=f(x)在x=0處切線的斜率大于零;
④y=f(x)在區(qū)間(-2,2)上單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊(cè)答案