13.執(zhí)行如圖所示的程序框圖,數(shù)列{an}滿足an=n-1,輸入n=4,x=3,則輸出的結(jié)果v的值為( 。
A.34B.68C.96D.102

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構計算并輸出變量v的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運行,可得
n=4,a4=3,x=3,
v=3,i=3,
滿足繼續(xù)循環(huán)的條件i>0,執(zhí)行完循環(huán)體后,a3=2,v=3×3+2=11,i=2;
滿足繼續(xù)循環(huán)的條件i>0,執(zhí)行完循環(huán)體后,a2=1,v=11×3+1=34,i=1;
滿足繼續(xù)循環(huán)的條件i>0,執(zhí)行完循環(huán)體后,a1=0,v=34×3+0=102,i=0;
不滿足繼續(xù)循環(huán)的條件i>0,退出循環(huán)體后,輸出的結(jié)果v=102,
故選:D.

點評 本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為9ρ2cos2θ+16ρ2sin2θ=144,且直線l與曲線C交于P,Q兩點.
(Ⅰ)求曲線C的直角坐標方程及直線l恒過的頂點A的坐標;
(Ⅱ)在(Ⅰ)的條件下,若|AP|•|AQ|=9,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知角α的終邊上一點的坐標為(-5,12),則sinα=$\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知a>0,b>0,若直線l1:x+a2y+2=0與直線l2:(a2+1)x-by+3=0互相垂直,則ab的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設f(x)=lnx,f'(x)是f(x)的導數(shù),若$g(x)=f(x)-\frac{2}{f'(x)}-a$有兩個不相同的零點,則實數(shù)a的取值范圍是(-∞,ln$\frac{1}{2}$-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在平面直角坐標系中,將曲線C:y=sin2x上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,所得新的曲線方程為y=3sin2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線過點(2,$\sqrt{3}$),且一條漸近線方程為y=$\frac{1}{2}$x,則該曲線的標準方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}$-y2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某球星在三分球大賽中命中率為$\frac{1}{2}$,假設三分球大賽中總計投出8球,投中一球得3分,投丟一球扣一分,則該球星得分的期望與方差分別為( 。
A.16,32B.8,32C.8,8D.32,32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知各項為正的數(shù)列{an}的前n項和為Sn,數(shù)列{an}滿足Sn=$\frac{{{a}_{n}}^{2}+{a}_{n}}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=$\frac{1}{({a}_{n}+1)^{2}}$,它的前n項和為Tn,求證:對任意正整數(shù)n,都有Tn<1.

查看答案和解析>>

同步練習冊答案