(本小題滿分12分)設圓C:,此圓與拋物線有四個不同的交點,若在軸上方的兩交點分別為,,坐標原點為,的面積為。
(1)求實數的取值范圍;
(2)求關于的函數的表達式及的取值范圍。
科目:高中數學 來源: 題型:解答題
直線與橢圓交于,兩點,已知
,,若且橢圓的離心率,又橢圓經過點,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(為半焦距),求直線的斜率的值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設,分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點,過的直線與E相交于A、B兩點,且,,成等差數列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在坐標原點,焦點在軸上的橢圓過點,且它的離心率.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)與圓相切的直線交橢圓于兩點,若橢圓上一點滿足,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設拋物線方程為,為直線上任意一點,過引拋物線的切線,切點分別為.
(1)求證:三點的橫坐標成等差數列;
(2)已知當點的坐標為時,.求此時拋物線的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點為軸上的動點,點為軸上的動點,點為定點,且滿足,.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點且斜率為的直線與曲線交于兩點,,試判斷在軸上是否存在點,使得成立,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的右焦點,且,設短軸的一個端點為,原點到直線的距離為,過原點和軸不重合的直線與橢圓相交于兩點,且.
(1)求橢圓的方程;
(2)是否存在過點的直線與橢圓相交于不同的兩點,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com