已知f(x)=loga(6-3ax)在[0,1]上是減函數(shù),則a的取值范圍是(  )
A、(0,1)
B、(1,2)
C、(1,2)
D、(1,+∞)
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,a>0,且 a≠1,函數(shù)t=6-3ax在[0,1]上大于零且是減函數(shù),則由
a>1
6-3a×1>0
,求得a的范圍.
解答: 解:由題意可得,a>0,且 a≠1,∴t=6-3ax在[0,1]上大于零且是減函數(shù).
又f(x)=loga(6-3ax)在[0,1]上是減函數(shù),則
a>1
6-3a×1>0
,求得1<a<2,
故選:C.
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)判斷函數(shù)y=f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以點A(-1,4)、B(3,2)為直徑的兩個端點的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x>1”是“x>
1
x
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(tanx)=sinxcosx,x∈(-
π
2
,
π
2
),則f(
1
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log65+log6
1
5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:?x∈R,x2-x+1<0是
 
命題(填寫“真“或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知區(qū)域Dn
x>0
y≥0
y≤-2nx+6n
(n∈N*)內(nèi)的整點(橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點)的個數(shù)為an,則
9
a1a2
+
9
a2a3
+…+
9
a8a9
+
9
a9a10
=( 。
A、
10
21
B、
20
21
C、
1
7
D、
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)螺釘和螺母,據(jù)統(tǒng)計知,螺桿為一等品、二等品的概率均為
1
2
;螺母為一等品的概率為
2
3
,二等品概率為
1
3
;若一個螺桿與一個螺母可組成一件螺絲釘,搭配時要盡可能組裝成一等品.它們搭配后的等次按下表規(guī)則:
一等品 二等品
一等品一等品二等品
二等品二等品二等品 
現(xiàn)從生產(chǎn)的零件中任取螺母和螺桿各2個,組成2件螺絲釘.
(1)求2件螺絲釘都是一等品的概率;
(2)記螺絲釘是一等品的件數(shù)為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案