甲烷分子由一個(gè)碳原子和四個(gè)氫原子組成,其空間構(gòu)型為一正四面體,碳原子位于該正四面體的中心,四個(gè)氫原子分別位于該正四面體的四個(gè)頂點(diǎn)上.若將碳原子和氫原子均視為一個(gè)點(diǎn)(體積忽略不計(jì)),且已知碳原子與每個(gè)氫原子間的距離都為,則以四個(gè)氫原子為頂點(diǎn)的這個(gè)正四面體的體積為(   )
A.B.C.D.
B
過頂點(diǎn)A、V與高作一截面交BC于點(diǎn)M,點(diǎn)O為正四面體的中心,為底面ABC的中心,設(shè)正四面體VABC的棱長(zhǎng)為,則AM==VM,=,,,得,在中,,即,得。則,有,選B。
溫馨提示:正四面體外接球的半徑:內(nèi)切球的半徑=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,四邊形為平行四邊形,上一點(diǎn),且.
(1)求證:;
(2)若點(diǎn)為線段的中點(diǎn),求證:;
(3) 若 ,且二面角的大小為,
求三棱錐的體積.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為的等腰直角三角形,正視圖為直角梯形.
(1)若幾何體的體積為,求實(shí)數(shù)的值;
(2)若,求異面直線所成角的余弦值;
(3)是否存在實(shí)數(shù),使得二面角的平面角是,若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐O-ABC中,OA,OB,OC兩兩垂直,且OA=2,OB=,OC=,則三棱錐O-ABC外接球的表面積為(    )
A.4pB.12pC.16pD.40p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方形的邊長(zhǎng)為2,點(diǎn)分別在邊、上,且,,將此正方形沿、折起,使點(diǎn)重合于點(diǎn),則三棱錐的體積是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC、AD的中點(diǎn).
(1)求證:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一個(gè)螺栓的底面是正六邊形,它的正視圖和俯視圖如圖所示,則它的體積是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)正方體的各頂點(diǎn)均在同一球的球面上, 若該正方體的棱長(zhǎng)為2, 則該球的體積為——

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方形,則以為焦點(diǎn),且過兩點(diǎn)的橢圓的離心率為    

查看答案和解析>>

同步練習(xí)冊(cè)答案