【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為
(1)求a,b;
(2)設(shè)過F2的直線l與C的左、右兩支分別相交于A、B兩點(diǎn),且|AF1|=|BF1|,證明:|AF2|、|AB|、|BF2|成等比數(shù)列.

【答案】
(1)解:由題設(shè)知 =3,即 =9,故b2=8a2

所以C的方程為8x2﹣y2=8a2

將y=2代入上式,并求得x=± ,

由題設(shè)知,2 = ,解得a2=1

所以a=1,b=2


(2)解:由(1)知,F(xiàn)1(﹣3,0),F(xiàn)2(3,0),C的方程為8x2﹣y2=8

由題意,可設(shè)l的方程為y=k(x﹣3),|k|<2 代入①并化簡(jiǎn)得(k2﹣8)x2﹣6k2x+9k2+8=0

設(shè)A(x1,y1),B(x2,y2),

則x1≤﹣1,x2≥1,x1+x2= , ,于是

|AF1|= =﹣(3x1+1),

|BF1|= =3x2+1,

|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即

= ,解得 ,從而 =﹣

由于|AF2|= =1﹣3x1,

|BF2|= =3x2﹣1,

故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16

因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比數(shù)列


【解析】(1)由題設(shè),可由離心率為3得到參數(shù)a,b的關(guān)系,將雙曲線的方程用參數(shù)a表示出來,再由直線 建立方程求出參數(shù)a即可得到雙曲線的方程;(2)由(1)的方程求出兩焦點(diǎn)坐標(biāo),設(shè)出直線l的方程設(shè)A(x11),B(x2 , y2),將其與雙曲線C的方程聯(lián)立,得出x1+x2= , ,再利用|AF1|=|BF1|建立關(guān)于A,B坐標(biāo)的方程,得出兩點(diǎn)橫坐標(biāo)的關(guān)系 ,由此方程求出k的值,得出直線的方程,從而可求得:|AF2|、|AB|、|BF2|,再利用等比數(shù)列的性質(zhì)進(jìn)行判斷即可證明出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.

(1)證明AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn . 已知S3=a22 , 且S1 , S2 , S4成等比數(shù)列,求{an}的通項(xiàng)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sinx的圖象向右平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,滿足,數(shù)列滿足,,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;

(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,再將圖像上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變),得到的圖像.

(1)求的單調(diào)遞增區(qū)間;

(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有窮數(shù)列中的每一項(xiàng)都是-1,0,1這三個(gè)數(shù)中的某一個(gè)數(shù),,且,則有窮數(shù)列中值為0的項(xiàng)數(shù)是(

A. 1000B. 1010C. 1015D. 1030

查看答案和解析>>

同步練習(xí)冊(cè)答案