設(shè)函數(shù)f(x)=x3-3ax+b(a≠0)在點(diǎn)(2,f(2))處與直線y=8相切.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)先求出函數(shù)的導(dǎo)數(shù),通過(guò)解方程組求出a,b的值,(2)分別令f′(x)>0,f′(x)<0,解不等式,求出單調(diào)區(qū)間,從而求出函數(shù)的最值.
解答: 解:(1)∵f′(x)=3x2-3a,
f(2)=0
f(2)=8
,即
12-3a=0
8-6a+b=8
,
解得:
a=4
b=24
,
∴f(x)=x3-12x+24.
(2)∵f′(x)=3(x-2)(x+2),
令f′(x)>0,解得:x>2,x<-2,
令f′(x)<0,解得:-2<x<2,
∴f(x)在(-∞,2),(2,+∞)上遞增,在(-2,2)上遞減;
∴f(x)極大值=f(-2)=40,f(x)極小值=f(2)=8.
點(diǎn)評(píng):本題考察了求函數(shù)的解析式問(wèn)題,函數(shù)的單調(diào)性以及最值問(wèn)題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知A=60°,a=
6
,c=
5
,則b=(  )
A、
3-
5
2
B、
3+
5
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面給出了四個(gè)類比推理:
①由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若
a
,
b
,
c
為三個(gè)向量則(
a
b
)•
c
=
a
•(
b
c
)”
②已知△ABC周長(zhǎng)為c,且它的內(nèi)切圓半徑為r,則三角形的面積為
1
2
cr.類比推出,若四面體D-ABC的表面積為s,內(nèi)切球半徑為r,則其體積是
1
3
sr
③“若a,b∈R,則a-b>0⇒a>b”類比推出“若a,b∈C,(C為復(fù)數(shù)集)則a-b>0⇒a>b”;
④經(jīng)過(guò)圓x2+y2=r2上一點(diǎn)M(x0,y0)的切線方程為x0x+y0y=r2.類比上述性質(zhì),類比推出經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1上一點(diǎn)M(x0,y0)的切線方程為
x0x
a2
+
y0y
b2
=1
上述四個(gè)推理中,結(jié)論正確的是( 。
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x3-x2-m=0在[1,2]上有解,則實(shí)數(shù)m的取值范圍是( 。
A、0<m≤2
B、0≤m≤2
C、0<m≤4
D、0≤m≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R,x2+2ax+2-a=0”.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù),a≠0,x∈R),F(xiàn)(x)=
f(x) , x>0
-f(x) , x<0

(1)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(2)設(shè)mn<0,m+n>0,a>0,且函數(shù)f(x)為偶函數(shù),判斷F(m)+F(n)是否大于0?
(3)設(shè)g(x)=
lnx+1
ex
,當(dāng)a=b=1時(shí),證明:對(duì)任意實(shí)數(shù)x>0,[F(x)-1]g′(x)<1+e-2(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx(a,b∈R),函數(shù)g(x)=lnx.
(1)當(dāng)a=0時(shí),函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有公共點(diǎn),求實(shí)數(shù)b的最大值;
(2)當(dāng)b=0時(shí),試判斷函數(shù)f(x)的圖象與函數(shù)g(x)的圖象的公共點(diǎn)的個(gè)數(shù);
(3)函數(shù)f(x)的圖象能否恒在函數(shù)y=bg(x)的上方?若能,求出a,b的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在橢圓中,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦,叫做橢圓的通徑.如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,其離心率為
1
2
,通徑長(zhǎng)為3.
(1)求橢圓的方程;
(2)過(guò)F2的動(dòng)直線l交橢圓于A、B兩點(diǎn),
(。﹩(wèn)在x軸上是否存在定點(diǎn)C,使
CA
CB
恒為常數(shù)?若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由.
(ⅱ)延長(zhǎng)BF1交橢圓于點(diǎn)M,I1、I2分別為△F1BF2、△F1MF2的內(nèi)心,證明四邊形F1I2F2I1與△MF2B的面積的比值恒為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻數(shù)分布直方圖如圖所示.
(Ⅰ)求頻數(shù)直方圖中a的值;
(Ⅱ)分別球出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案