已知△ABC的面積為2
,AB=2,BC=4,AC=
.
考點:余弦定理
專題:解三角形
分析:通過三角形的面積求出B,利用余弦定理求解即可.
解答:
解:△ABC的面積為2
,AB=2,BC=4,
∴
AB•BCsinB=2
,∴
×2×4sinB=2,sinB=
,
cosB=
±.
AC
2=AB
2+BC
2-2AB•BCcosB=4+16-16×
(±),
∴AC=2
,或AC=2
.
故答案為:2
,或2
.
點評:本題考查三角形的解法,余弦定理的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知全集U={x|-1≤x≤4},A={x|x2-1≤0},B={x|0<x≤3},求:
(1)A∩B;
(2)A∪B;
(3)∁UA;
(4)(∁UB)∩A.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知集合A={x|(x+1)(x-2)≤0},B={x|1<(
)
x<16},C={x|x
2+(2a-5)x+a(a-5)≤0},U=R.
(1)求A∩B;(∁
UA)∪B;
(2)如果A∩C=A,求實數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若A={y|y=2x,x∈R},B{(x,y)|y=x2,x∈R},則A∩B的子集個數(shù)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
與雙曲線
-
=1有共同的漸近線,且經(jīng)過(2,0)的雙曲線方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知橢圓
+=1(a>b>0)的右焦點為F(3,0),過F的直線交橢圓與A,B兩點,若AB的中點坐標(biāo)為(1,-1),則a+b的值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知O為坐標(biāo)原點,向量
=(1,sinα),
=(0,cosα),
=(2,-sinα),點P滿足
=
.
(1)若O、P、C三點共線,求tanα的值;
(2)記函數(shù)f(α)=
•
,求函數(shù)f(α)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知x≥-10,關(guān)于x的不等式|x-3|-|2x+10|+x+15-2|a+13|≥0的解集不是空集,則實數(shù)a的取值范圍
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)命題p:函數(shù) f(x)=lg(ax
2-4x+a)的定義域為R;命題q:不等式a<x+
-1對?x∈(0,+∞)恒成立.如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>