15.已知集合A={-2,-1,0,1,2},$B=\{\left.x\right|\frac{1}{4}<{2^x}<4,x∈R\}$,則A∩B等于( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{-2,-1,0,1,2}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:2-2<2x<22,
解得:-2<x<2,即B=(-2,2),
∵A={-2,-1,0,1,2},
∴A∩B={-1,0,1},
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)正數(shù)數(shù)列{an}的前n項和為Sn,且存在正數(shù)t,使得對所有的正整數(shù)n,都有$\sqrt{t{S_n}}=\frac{{t+{a_n}}}{2}$,則Sn=tn2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果?ξ∈[a,b],使得f(b)-f(a)=f′(ξ)(b-a),則稱ξ為區(qū)間[a,b]上的“中值點”.下列函數(shù):①f(x)=3x+2;②f(x)=x2;③f(x)=ln(x+1);④$f(x)={({x-\frac{1}{2}})^3}$中,在區(qū)間[0,1]上“中值點”多于1個的函數(shù)是( 。
A.①④B.①③C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列說法中,正確的是( 。
A.“0≤m≤1”是“函數(shù)f(x)=cosx+m-1有零點”的充分不必要條件
B.命題“若am2<bm2,則a<b”的逆命題是真命題
C.命題“p∨q”為真命題,則“命題p”和“命題q”均為真命題
D.命題“?x∈R,|x|+x2≥0”的否定是“$?{x_0}∈R,|{x_0}|+x_0^2≥0$”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知正項等比數(shù)列{an}滿足:a6+2a5=15a4,若存在兩項am,an使得$\sqrt{{a_m}{a_n}}=3{a_1},則-m+\frac{12}{n}$的最小值為(  )
A.4B.3C.$4\sqrt{3}-4$D.$4-2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知平面區(qū)域M={(m,n)||m|≤3,|n|≤3}
(1)以以后兩次擲骰子得到的點數(shù)x,y作為橫、縱坐標,求點P(x,y)落在區(qū)域M內(nèi)的概率;
(2)試求方程x2+2mx-n2+9=0有兩個實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若函數(shù)f(x)=-$\frac{1}{2}$x2+blnx在區(qū)間[1,2]不單調(diào),則b的取值范圍是( 。
A.(-∞,1]B.[4,+∞)C.(-∞,-1]∪[4,+∞)D.(-1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.連接雙曲線2x2-y2=1上任意四個不同點組成的四邊形可能的情況是(1)(2)(3)(4)(5).
(1)矩形(2)菱形(3)平行四邊形(4)等腰梯形(5)正方形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)y=e-|x-1|的圖象大致形狀是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案