解:(Ⅰ)橢圓C的焦點坐標(biāo)在x軸上,由橢圓上的點A到到F
1、F
2兩點的距離之和等于4,
得2a=4,即a=2,
又橢圓C上的點A(1,
),因此
,解得b=
,所以c=1,
所以橢圓的標(biāo)準(zhǔn)方程為
,F(xiàn)
1、F
2兩焦點坐標(biāo)為(-1,0),(1,0).
(Ⅱ)設(shè)點P是(Ⅰ)中所得橢圓上的動點設(shè)(x,y),
則
,∴
,Q(0,
),
=-
=
,
因為
,
∴
時,|PQ|的最大值=
;
(Ⅲ)類似性質(zhì),若M、N是雙曲線雙曲線
-
=1上關(guān)于原點對稱的兩個點,點P在雙曲線上任意一點,當(dāng)直線PM、PN的斜率都存在,并記為K
PM、K
PN時,那么K
PM與K
PN之積是與點P位置無關(guān)的定值.
分析:(Ⅰ)若橢圓C上的點A(1,
)到F
1、F
2兩點的距離之和等于4,利用橢圓的定義,求出a,b,c 即可得到橢圓C的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點P的坐標(biāo),代入(Ⅰ)中所得橢圓方程,利用Q(0,
),求|PQ|的表達式,結(jié)合y的范圍即可求出y的最大值;
(Ⅲ)類似橢圓的定義,直接把橢圓換為雙曲線即可得到性質(zhì).
點評:本題是中檔題,考查橢圓的定義,標(biāo)準(zhǔn)方程的求法,兩點間的距離公式最值的求法,考查計算能力轉(zhuǎn)化思想的應(yīng)用.