棱長為1的正方形ABCD-A1B1C1D1的8個頂點都在球O的表面上,則球O的表面積是    ;設E、F分別是該正方形的棱AA1、DD1的中點,則直線EF被球O截得的線段長為   
【答案】分析:由題意可知正方體的體對角線計算球的直徑,求出對角線的長可得球的直徑,求出半徑,即可求出球的表面積;如圖所示,OP 是球的半徑,OQ是棱長的一半,求出PQ的2倍即可求出直線EF被球O截得的線段長.
解答:解:正方體對角線為球直徑,A1A2=3,
所以,所以球的表面積為3π;
由已知所求EF是正方體在球中其中一個截面的直徑,
d=,所以,
所以2PQ=2r=
故答案為:3π;
點評:本題考查正方體的外接球,球的表面積的計算,球的截面知識,考查計算能力,空間想象能力,正確利用條件求解直線EF被球O截得的線段長,是本題的難點,結合圖形直觀,易于解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在棱長為1的正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,E、F分別為AB、BC的中點,則異面直線C1O與EF的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側棱PA的長為2,且PA與AB、AD的夾角都等于60°,M是PC的中點,設
AB
=
a
,
AD
=
b
,
AP
=
c

(1)試用
a
,
b
c
表示出向量
BM
;
(2)求BM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD,底面是邊長為1的正方形,側棱PA⊥底面ABCD且PA=1,M、N分別為AD、BC的中點,MQ⊥PD于Q.
(I)求證:AB∥平面MNQ;
(Ⅱ)求證:平面PMN⊥平面PAD;
(Ⅲ)求二面角P-MN-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)如圖,已知四棱臺ABCD-A1B1C1D1的側棱A1A垂直于底面AB-CD,底面ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1=2.
(1)求證:平面A1ACC1丄平面B1BDD1
(2)求四棱錐A-CDD1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(理) 題型:選擇題

在棱長為1的正方形ABCD—A1B1C1D1的底面A1B1C1D1內取一點E,使AE與AB、AD所成的角都是60°,則線段AE的長為                                                                                        (    )

       A.                   B.                   C.                    D.

 

查看答案和解析>>

同步練習冊答案