2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{5^x},x≤0\end{array}$,則$f(f(\frac{1}{8}))$=$\frac{1}{125}$.

分析 先求出f($\frac{1}{8}$)=$lo{g}_{2}\frac{1}{8}$=-3,從而$f(f(\frac{1}{8}))$=f(-3),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{5^x},x≤0\end{array}$,
∴f($\frac{1}{8}$)=$lo{g}_{2}\frac{1}{8}$=-3,
$f(f(\frac{1}{8}))$=f(-3)=${5}^{-3}=\frac{1}{125}$.
故答案為:$\frac{1}{125}$.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若sinA,sinB,sinC成等比數(shù)列,且c=2a,則cosB=( 。
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)為偶函數(shù),且滿足f(x)=f(x+2),f(-1)=1,若數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=an+1,a1=$\frac{1}{2}$,則f(a5)+f(a6)=( 。
A.4B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若關(guān)于x的方程a2-2a=|ax-1|(a>0且a≠1)有兩個(gè)不等實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A.(2,$\sqrt{2}$+1)B.($\sqrt{2}$,$\sqrt{2}$+1)C.($\sqrt{2}$,2)D.($\sqrt{2}$,2)∪(2,$\sqrt{2}$+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=log2(2x+1)-$\frac{x}{2}$.
(1)證明:對(duì)任意的b∈R,函數(shù)f(x)=log2(2x+1)-$\frac{x}{2}$的圖象與直線y=$\frac{x}{2}$+b最多有一個(gè)交點(diǎn);
(2)設(shè)函數(shù)g(x)=log4(a-2x),若函數(shù)y=f(x)與函數(shù)y=g(x)的圖象至少有一個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線方程為y=±$\frac{1}{2}$x,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.1C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.過(guò)拋物線y2=8x焦點(diǎn)F作直線l交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)M的橫坐標(biāo)為4,則|AB|=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=$\sqrt{{x}^{2}-5x-6}$的定義域?yàn)椋?∞,-1]∪[6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|2<x<4},B={x|x2-4x+3<0},則A∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案