已知定義在R上的函數(shù)(a,b,c,d為實常數(shù))的圖象關(guān)于原點對稱,且當(dāng)x=1時f(x)取得極值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)證明:對任意∈[-1,1],不等式成立;
(Ⅲ)若函數(shù)在區(qū)間(1,∞)內(nèi)無零點,求實數(shù)m的取值范圍.
(1)(2)見解析(3)(-∞,1]
(Ⅰ)因為f(x)的圖象關(guān)于原點對稱,則f(x)為奇函數(shù),所以f(0)=0,即d=0.(1分)
又,即,則b=0.
所以,.
因為當(dāng)x=1時f(x)取得極值,則,且.
即,故.
(Ⅱ)因為,則當(dāng)-1≤x≤1時,.
所以f(x)在[-1,1]上是減函數(shù).
所以當(dāng)x∈[-1,1]時,,.
故當(dāng)∈[-1,1]時,.
(Ⅲ)因為,則,.
由,得,即,即.
所以在區(qū)間上是增函數(shù),在上是減函數(shù),從而在處取極小值.
又,若函數(shù)在區(qū)間(1,∞)內(nèi)無零點,則,所以,即m≤1.
故實數(shù)m的取值范圍是(-∞,1].
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、-2 | B、2 | C、4 | D、-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、0 | B、2013 | C、3 | D、-2013 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com