【題目】如圖,在半徑為的半圓形鐵皮上截取一塊矩形材料ABCD(點A、B在直徑上,點C、D在半圓周上),并將其卷成一個以AD為母線的圓柱體罐子的側面(不計剪裁和拼接損耗),
(1)若要求圓柱體罐子的側面積最大,應如何截�。�
(2)若要求圓柱體罐子的體積最大,應如何截��?
【答案】(1)當截取的矩形鐵皮的一邊為
為時,圓柱體罐子的側面積最大.
(2)當截取的矩形鐵皮的一邊為
為時,圓柱體罐子的體積最大.
【解析】解:(1)如圖,設圓心為O,連結,設
,
法一 易得,
,故所求矩形
的面積為
(
)
(當且僅當,
(
)時等號成立) 此時
;
法二 設,
; 則
,
,
所以矩形的面積為
,
當,即
時,
(
)此時
;
(2)設圓柱的底面半徑為,體積為
,由
得,
,
所以,其中
,
由得
,此時,
在
上單調遞增,在
上單調遞減, 故當
時,體積最大為
,
答:(1)當截取的矩形鐵皮的一邊為
為時,圓柱體罐子的側面積最大.
(2)當截取的矩形鐵皮的一邊為
為時,圓柱體罐子的體積最大.
科目:高中數(shù)學 來源: 題型:
【題目】已知x,y滿足約束條件 ,當目標函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小值2
時,a2+b2的最小值為( )
A.5
B.4
C.
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,
的夾角為120°,|
|=2,|
|=3,記|
=3
﹣2
,
=2
+k
.
(1)若 ⊥
,求實數(shù)k的值.
(2)是否存在實數(shù)k,使得 ∥
?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ) 部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)設g(x)=f(x)﹣cos2x,求函數(shù)g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(﹣ ,0),B(
,0),P是平面內的一個動點,直線PA與PB交于點P,且它們的斜率之積是﹣
.
(1)求動點P的軌跡C的方程;
(2)設直線l:y=kx+1與曲線C交于M、N兩點,當線段MN的中點在直線x+2y=0上時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的公差為d,前n項和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項公式
(2)當d>1時,記cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等極如下表:
質量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調查數(shù)據(jù) ,能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產(chǎn)品質量指標值近似滿足
,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosα,sinα),
=(cosβ,sinβ),|
﹣
|=
.
(1)求cos(α﹣β)的值;
(2)若0<α< ,﹣
<β<0,且sinβ=﹣
,求sinα的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com