已知雙曲線的一個焦點(diǎn)與圓x2+y2-10x=0的圓心重合,且雙曲線的離心率等于,則該雙曲線的標(biāo)準(zhǔn)方程為   
【答案】分析:將圓化成標(biāo)準(zhǔn)方程得圓x2+y2-10x=0的圓心為F(5,0),可得c==5,結(jié)合雙曲線的離心率e==算出a=,由平方關(guān)系得到b2=20,由此即可得出該雙曲線的標(biāo)準(zhǔn)方程.
解答:解:∵圓x2+y2-10x=0化成標(biāo)準(zhǔn)方程,得(x-5)2+y2=25
∴圓x2+y2-10x=0的圓心為F(5,0)
∵雙曲線的一個焦點(diǎn)為F(5,0),且的離心率等于
∴c==5,且=
因此,a=,b2=c2-a2=20,可得該雙曲線的標(biāo)準(zhǔn)方程為
故答案為:
點(diǎn)評:本題給出雙曲線的離心率,并且一個焦點(diǎn)為已知圓的圓心,求雙曲線的標(biāo)準(zhǔn)方程,著重考查了圓的標(biāo)準(zhǔn)方程、雙曲線的基本概念和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點(diǎn)與虛軸的一個端點(diǎn)的連線及實軸所在直線所成的角為30°,則雙曲線的離心率為
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點(diǎn)與拋物線x=-
1
8
y2
的焦點(diǎn)相同,且雙曲線的離心率是2,那么雙曲線的漸近線方程是
y=±
3
x
y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點(diǎn)F1(0,5),且過點(diǎn)(0,4),則該雙曲線的標(biāo)準(zhǔn)方程是
y2
16
-
x2
9
=1
y2
16
-
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點(diǎn)與拋物線x2=20y的焦點(diǎn)重合,且其漸近線的方程為3x±4y=0,則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A、
x2
9
-
y2
16
=1
B、
x2
16
-
y2
9
=1
C、
y2
9
-
x2
16
=1
D、
y2
16
-
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省、莊河高中高三上學(xué)期期末理科數(shù)學(xué) 題型:選擇題

已知雙曲線的一個焦點(diǎn)與拋物線的焦點(diǎn)重合,且雙曲線的離心率等于,則該雙曲線的方程為                                          

A.     B.    C.    D.

 

查看答案和解析>>

同步練習(xí)冊答案