14.如圖是根據(jù)變量x,y的觀測數(shù)據(jù)(xi,yi)(i=1,2,3,…,10)得到的散點圖,由這些散點圖可以判斷變量x,y具有相關關系的圖是( 。
A.①②B.②③C.③④D.①④

分析 根據(jù)散點圖中所有點的分布情況,是y隨x的增大而減小,還是y隨x的增大而增大,即可得出結論.

解答 解:由圖③知,變量y隨x的增大而減小,各點整體呈下降趨勢,x與y有明顯的負相關關系,
由圖④知,變量y隨x的增大而增大,各點整體呈上升趨勢,x與y有明顯的正相關關系.
故選:C.

點評 本題考查了散點圖的應用問題,也考查了通過讀圖識別兩個變量間的線性相關關系,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.拋物線y=-mx2的準線方程是y=-3,則m的值為( 。
A.$\frac{1}{12}$B.12C.$-\frac{1}{12}$D.-12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),sinβ=-$\frac{12}{13}$,β是第三象限角,則sinα•tanβ=( 。
A.-$\frac{48}{25}$B.$\frac{48}{25}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.計算sin(-$\frac{π}{6}$)+cos$\frac{11π}{3}$+tan(-$\frac{5π}{3}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設x∈R,函數(shù)$f(x)=sin(ωx+φ)(ω>0,-\frac{π}{2}<φ<0)$的最小正周期為π,且$f(\frac{π}{4})=\frac{1}{2}$.
(Ⅰ)求ω和φ的值;
(Ⅱ)求函數(shù)f(x)在(-π,π)上的單調第減區(qū)間;
(Ⅲ)若f(x)>$\frac{{\sqrt{2}}}{2}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若曲線f(x)=sinx-$\sqrt{2}$cosx的切線的傾斜角為α,則α的取值范圍為( 。
A.$[0,\frac{π}{3}]$B.$[\frac{π}{3},\frac{2}{3}π]$C.$[0,\frac{π}{3}]∪[\frac{2}{3}π,π)$D.$[0,\frac{π}{3}]∪[\frac{2}{3}π,π]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)在x=1處的切線方程;
(2)求函數(shù)f(x)的單調區(qū)間和極值;
(3)若函數(shù)f(x)與g(x)=x+$\frac{a}{x}$(a∈R)有相同極值點,且對于任意的${x_1},{x_2}∈[\frac{1}{e},e]$,不等式f(x1)-g(x2)≤m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.$\int\begin{array}{l}1\\ 0\end{array}\;x\;dx$=( 。
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知以點C為圓心的圓經(jīng)過點A(0,-1)和B(4,3),且圓心在直線3x+y-15=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)設點P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

同步練習冊答案