精英家教網 > 高中數學 > 題目詳情
(本小題滿分16分)如圖,在直角坐標系中,三點在軸上,原點和點分別是線段的中點,已知為常數),平面上的點滿。

(1)試求點的軌跡的方程;
(2)若點在曲線上,求證:點一定在某圓上;
(3)過點作直線,與圓相交于兩點,若點恰好是線段的中點,試求直線的方程。
⑴由題意可得點的軌跡是以為焦點的橢圓. ……………………(2分)
且半焦距長,長半軸長,則的方程為.………(5分)
⑵若點在曲線上,則.設,,則.…………………………………………………………………………(7分)
代入,得,所以點一定在某一圓上.
………………………………(10分)
⑶由題意.………………………………………………………………(11分)
,則.┈┈┈①
因為點恰好是線段的中點,所以.代入的方程得.┈┈┈②
聯(lián)立①②,解得,.…………………………………………………(15分)
故直線有且只有一條,方程為.……………………………………………(16分)
(若只寫出直線方程,不說明理由,給1分)
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

我國于2010年10月1日成功發(fā)射嫦娥二號衛(wèi)星,衛(wèi)星飛行約兩小時到達月球,到達月球以后,經過幾次變軌將繞月球以橢圓型軌道飛行,其軌跡是以月球的月心為一焦點的橢圓。若第一次變軌前衛(wèi)星的近月點到月心的距離為m,遠月點到月心的距離為n,第二次變軌后兩距離分別為2m,2n.則第一次變軌前的橢圓離心率比第二次變軌后的橢圓離心率 (   )
A.變大B.變小C.不變D.與的大小有關

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.(本小題滿分12分)
已知點,動點滿足條件.記動點的軌跡為.
(1)求的方程;
(2)若上的不同兩點,是坐標原點,求的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.(本小題滿分14分)
如圖所示,在直角梯形ABCD中,,曲線段.DE上
任一點到A、B兩點的距離之和都相等.
(Ⅰ) 建立適當的直角坐標系,求曲線段DE的方程;
(Ⅱ) 過C能否作-條直線與曲線段DE 相交,且所
得弦以C為中點,如果能,求該弦所在的直線
的方程;若不能,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.設,分別為具有公共焦點的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為
A.B.1C.2D.不確定

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

判斷方程所表示的曲線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且垂直于另一條直線的平面內的軌跡是            (   
A.直線B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過點的動直線軸的交點分別為,過分別作軸的垂線,則兩垂線交點的軌跡方程為:                            .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

與橢圓共焦點且過點P(2,1)的雙曲線方程是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案