6.函數(shù)g(x)=2x+3,f(x)=g(2x-1),則f(x+1)=( 。
A.2x+1B.4x+5C.4x-5D.4x+1

分析 根據(jù)復(fù)合函數(shù)的性質(zhì),求解出f(x)的解析式,將f(x)中的x替換成x+1即可得答案.

解答 解:函數(shù)g(x)=2x+3,f(x)=g(2x-1),
那么:f(x)=2(2x-1)+3=4x+1.
∴f(x+1)=4(x+1)+1=4x+5.
故選B.

點評 本題考查了復(fù)合函數(shù)的解析式求法和帶值計算問題,要理解函數(shù)的定義.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“a=1”是“函數(shù)f(x)=x2+2ax-2在區(qū)間(-∞,-1]上單調(diào)遞減”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex,g(x)=mx+n.
(1)設(shè)h(x)=f(x)-g(x).當n=0時,若函數(shù)h(x)在(-1,+∞)上沒有零點,求m的取值范圍;
(2)設(shè)函數(shù)r(x)=$\frac{1}{f(x)}$+$\frac{nx}{g(x)}$,且n=4m(m>0),求證:當x≥0時,r(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)等差數(shù)列{an},{bn}的前n項之和分別為Sn、Tn.若對任意n∈N*有①(n+3)Sn=(3n+1)Tn;②a${\;}_{{n}^{2}+27}$≥λ•bn均恒成立,且存在n0∈N*,使得實數(shù)λ有最大值,則n0=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.cos105°cos45°+sin45°sin105°的值( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=ax-4a-x(a>0且a≠1)在[0,2]上的最大值與最小值之和為0,則a的值為( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x+3,且f(0)=2.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)在[-3,2)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列四個結(jié)論:
①△ABC中,P:A>B,Q:sinA>sinB,P是Q的充分不必要條件
②在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等;
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④命題“?x∈R+,x-lnx>0”的否定是“?x0∈R+,x0-lnx0≤0”.
其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱錐P-ABC中,D,E分別是BC,AC的中點.PB=PC=AB=2,AC=4,BC=2$\sqrt{3}$,PA=$\sqrt{6}$.
(1)求證:平面ABC⊥平面PED;
(2)求AC與平面PBC所成的角;
(3)求平面PED與平面PAB所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案