已知橢圓,左右焦點(diǎn)分別為F1,F(xiàn)2,長(zhǎng)軸的一個(gè)端點(diǎn)與短軸兩個(gè)端點(diǎn)組成等邊三角形,直線l經(jīng)過點(diǎn)F2,傾斜角為45°,與橢圓交于A,B兩點(diǎn).
(1)若|F1F2|=2,求橢圓方程;
(2)對(duì)(1)中橢圓,求△ABF1的面積;
(3)M是橢圓上任意一點(diǎn),若存在實(shí)數(shù)λ,μ,使得,試確定λ,μ的關(guān)系式.
【答案】分析:(1)利用長(zhǎng)軸的一個(gè)端點(diǎn)與短軸兩個(gè)端點(diǎn)組成等邊三角形,|F1F2|=2,即可求橢圓方程;
(2)△ABF1的面積,可以以焦距長(zhǎng)為底,A、B縱坐標(biāo)差的絕對(duì)值為高進(jìn)行求解;
(3)確定橢圓的右焦點(diǎn)F的坐標(biāo),設(shè)出直線AB所在直線方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理及,同時(shí)利用點(diǎn)A,B在橢圓上,即可求得λ,μ的關(guān)系式.
解答:解:(1)由已知,可得,,
∵a2=b2+c2,∴,b=1,
∴橢圓方程為
(2)設(shè)A(x1,y1),B(x2,y2),直線,
代入橢圓方程,消去y可得
,,,,

(3)由已知橢圓方程為x2+3y2=3b2①,右焦點(diǎn)F的坐標(biāo)為,直線AB所在直線方程為②,
由①②得:,
設(shè)A(x1,y1),B(x2,y2),則,
設(shè)M(x,y),由得,x=λx1+μx2,y=λy1+μy2
∵點(diǎn)M在橢圓上,∴,
整理得:,③
④,
又點(diǎn)A,B在橢圓上,故⑤,⑥,
將④⑤⑥代入③得λ22=1.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查三角形面積的計(jì)算,考查直線與橢圓的位置關(guān)系,聯(lián)立方程,利用韋達(dá)定理是常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn),.當(dāng)時(shí),M恰為橢圓的上頂點(diǎn),此時(shí)△的周長(zhǎng)為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左頂點(diǎn)為A,直線與直線分別相交于點(diǎn),問當(dāng)

變化時(shí),以線段為直徑的圓被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,

若不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式的左右焦點(diǎn)分別是F1,F(xiàn)2,過右焦點(diǎn)F2且斜率為k的直線與橢圓交于A,B兩點(diǎn).
(1)若k=1,求|AB|的長(zhǎng)度、△ABF1的周長(zhǎng);
(2)若數(shù)學(xué)公式,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓

軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓

軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:

分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓

軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案