【題目】在科普知識(shí)競(jìng)賽前的培訓(xùn)活動(dòng)中,將甲、乙兩名學(xué)生的6次培訓(xùn)成績(jī)(百分制)制成如圖所示的莖葉圖:

(1)若從甲、乙兩名學(xué)生中選擇1人參加該知識(shí)競(jìng)賽,你會(huì)選哪位?請(qǐng)運(yùn)用統(tǒng)計(jì)學(xué)的知識(shí)說(shuō)明理由;
(2)若從學(xué)生甲的6次培訓(xùn)成績(jī)中隨機(jī)選擇2個(gè),記選到的分?jǐn)?shù)超過(guò)87分的個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

【答案】
(1)解:學(xué)生甲的平均成績(jī) = =82,

學(xué)生乙的平均成績(jī) = =82,

又S2= [(68﹣82)2+(76﹣82)2+(79﹣82)2+(86﹣82)2+(88﹣82)2+(95﹣82)2]=77,

S2= [(71﹣82)2+(75﹣82)2+(82﹣82)2+(84﹣82)2+(86﹣82)2+(94﹣82)2]=

= ,S2>S2,

說(shuō)明甲、乙的平均水平一樣,但乙的方差小,則乙發(fā)揮更穩(wěn)定,故應(yīng)選擇學(xué)生乙參加知識(shí)競(jìng)賽.(6分)


(2)解:ξ的所有可能取值為0,1,2,

則P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= = ,

ξ的分布列為

ξ

0

1

2

P

所以數(shù)學(xué)期望Eξ= =


【解析】(1)分別求出從甲、乙兩名學(xué)生中的平均成績(jī)和方差,得到甲、乙的平均水平一樣,但乙的方差小,則乙發(fā)揮更穩(wěn)定,故應(yīng)選擇學(xué)生乙參加知識(shí)競(jìng)賽.(2)ξ的所有可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面PDC,E為棱PD的中點(diǎn).

(1)求證:PB∥平面EAC;
(2)求證:平面PAD⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2008年至2014年農(nóng)村居民家庭純收入y單位:千元的數(shù)據(jù)如下表:

年份

2008

2009

2010

2011

2012

2013

2014

年份代號(hào)

1

2

3

4

5

6

7

人均純收入y

29

33

36

44

48

52

59

求y關(guān)于的線性回歸方程

利用中的回歸方程,分析2008年至2014年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2016年農(nóng)村居民家庭人均純收入

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過(guò)A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.

(1)證明:Q為BB1的中點(diǎn);
(2)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=
(1)若a=5,求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|﹣1<x<2},當(dāng)實(shí)數(shù)a,b∈B∩(RA)時(shí),求證: <|1+ |.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A,B分別是橢圓C:=1(a>b>0)的左右頂點(diǎn),F為其右焦點(diǎn),2|AF||FB|的等差中項(xiàng),|AF||FB|的等比中項(xiàng).點(diǎn)P是橢圓C上異于A,B的任一動(dòng)點(diǎn),過(guò)點(diǎn)A作直線l⊥x.以線段AF為直徑的圓交直線AP于點(diǎn)A,M,連接FM交直線l于點(diǎn)Q.

(1)求橢圓C的方程;

(2)試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)N,使得直線PQ必過(guò)該定點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人事部門(mén)對(duì)參加某次專(zhuān)業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制的頻率分布直方圖如圖所示.規(guī)定80分以上者晉級(jí)成功,否則晉級(jí)失敗(滿(mǎn)分為100分).

(1)求圖中的值;

(2)估計(jì)該次考試的平均分 (同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);

(3)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān).

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

50

合計(jì)

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱臺(tái)ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.

(1)求證:BC1⊥平面ACC1
(2)求直線BC1與平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}和等比數(shù)列{bn}滿(mǎn)足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求和:b1+b3+b5+…+b2n1

查看答案和解析>>

同步練習(xí)冊(cè)答案