【題目】已知函數(shù)在處取得極值.
Ⅰ求實數(shù)a的值;
Ⅱ若關于x的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
Ⅲ證明:參考數(shù)據(jù):.
【答案】(1)0;(2);(3)見解析
【解析】
(1)求導,由f′(1)=0構造方程求出a;(2)由(1)將方程f(x)+2x=x2+b化簡,令g(x)=x2-3x+lnx+b(x>0),求導,研究當x變化時,g′(x),g(x)的變化情況,確定函數(shù)的最值,從而建立不等式組,即可求得結論;(3)設φ(x)=lnx-(x2-1),求導,根據(jù)函數(shù)的單調(diào)性得當x≥2時,>2,從而累加可得結論.
(1)f′(x)=1-,∵x=1是f(x)的一個極值點,∴f′(1)=0,即1-=0,∴a=0.
經(jīng)檢驗滿足題意.
(2)由(1)得f(x)=x-lnx,∴f(x)+2x=x2+b即x-lnx+2x=x2+b,∴x2-3x+lnx+b=0,
設g(x)=x2-3x+lnx+b(x>0),
則g′(x)=2x-3+=
=.
由g′(x)>0得0<x<或x>1,由g′(x)<0得<x<1,
∴當x∈,(1,+∞)時,函數(shù)g(x)單調(diào)遞增,x∈時,函數(shù)g(x)單調(diào)遞減,
當x=1時,g(x)極小值=g(1)=b-2,g=b--ln2,g(2)=b-2+ln2,
∵方程f(x)+2x=x2+b在上恰有兩個不相等的實數(shù)根,
∴即解得+ln2≤b<2.
(3)證明:∵k-f(k)=lnk,∴>.
+++…+> (n∈N,n≥2)
設φ(x)=lnx- (x2-1),則φ′(x)=-==-
當x≥2時,φ′(x)<0,∴函數(shù)y=φ(x)在[2,+∞)上是減函數(shù),
∴φ(x)≤φ(2)=ln2-<0,∴l(xiāng)nx< (x2-1).
∴當x≥2時, >=
=2,
∴+++…+>2
=2=.
∴原不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】(選做題)
A.[選修4-2:矩陣與變換](本小題滿分10分)
已知m,n∈R,向量是矩陣的屬于特征值3的一個特征向量,求矩陣M及另一個特征值.
B.[選修4-4:坐標系與參數(shù)方程](本小題滿分10分)
在平面直角坐標系xOy中,已知直線的參數(shù)方程為( t為參數(shù)),橢圓C的參數(shù)方程為.設直線與橢圓C交于A,B兩點,求線段AB的長.
C.[選修4-5:不等式選講](本小題滿分10分)
已知x,y,z均是正實數(shù),且求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程,并說明它為何種曲線;
(Ⅱ)設點的坐標為,直線交曲線于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點.
(1)若點的極坐標為,求的值;
(2)求曲線的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是空氣質(zhì)量的一個重要指標,我國標準采用世衛(wèi)組織設定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標.如圖是某地月日到日日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是( )
A.從日到日,日均值逐漸降低
B.這天的日均值的中位數(shù)是
C.這天中日均值的平均數(shù)是
D.從這天的日均監(jiān)測數(shù)據(jù)中隨機抽出一天的數(shù)據(jù),空氣質(zhì)量為一級的概率是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐D-ABC中,二面角A-BC-D的大小為90°,且∠BDC=90°,∠ABC=30°,BC=3,.
(1)求證:AC⊥平面BCD;
(2)二面角B-AC-D為45°,且E為線段BC的中點,求直線AE與平面ACD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲所示, 是梯形的高, , , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點是線段上一動點.
(1)證明: 和不可能垂直;
(2)當時,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓: ,長軸的右端點與拋物線: 的焦點重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過作直線交拋物線于, 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動圓M與圓F1:x2+y2+6x+5=0外切,同時與圓F2:x2+y2﹣6x﹣91=0內(nèi)切.
(1)求動圓圓心M的軌跡方程E,并說明它是什么曲線;
(2)若直線yx+m與(1)中的軌跡E有兩個不同的交點,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com