設(shè)x>0,y>0,x+y=1,則
x
+
y
≤a恒成立的a的最小值是( 。
A、
2
2
B、
2
C、2
D、2
2
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用(
x
+
y
)2
=x+y+2
xy
≤x+y+x+y=2,即可得出.
解答: 解:∵x>0,y>0,x+y=1,
(
x
+
y
)2
=x+y+2
xy
≤x+y+x+y=2,
x
+
y
2
.當(dāng)且僅當(dāng)x=y=
1
2
時(shí)取等號(hào).
x
+
y
≤a恒成立,
a≥
2

x
+
y
≤a恒成立的a的最小值是
2

故選:B.
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì)、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,且S6>S7>S5,給出下列五個(gè)命題:
①d>0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a6|>|a7|.
其中正確命題的個(gè)數(shù)是( 。
A、5B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式ax2+3x-2>0的解集為{x|1<x<b},
(1)求實(shí)數(shù)a,b的值;
(2)解關(guān)于x的不等式
x-b
ax-c
>0(c為實(shí)常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的兩個(gè)頂點(diǎn)B、C的坐標(biāo)分別是(-1,0)和(2,0),頂點(diǎn)A在直線y=2x-1上運(yùn)動(dòng),求△ABC的重心G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sin(-2x+
π
4
),給出以下四個(gè)論斷
①函數(shù)圖象關(guān)于直線x=-
8
對(duì)稱;
②函數(shù)圖象一個(gè)對(duì)稱中心是(
8
,0);
③函數(shù)f(x)在區(qū)間[-
π
8
8
]上是減函數(shù);
④當(dāng)且僅當(dāng)kπ+
8
<x<kπ+
8
(k∈Z)時(shí),f(x)<0.
以上四個(gè)論斷正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x2-ax+3a)在區(qū)間(2,+∞)上單調(diào)增,則函數(shù)y=2a的值域
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是橢圓
x2
16
+
y2
9
=1上的動(dòng)點(diǎn),作PD⊥y軸,D為垂足,則PD中點(diǎn)的軌跡方程為(  )
A、
x2
9
+
y2
16
=1
B、
x2
64
+
y2
9
=1
C、
x2
9
+
y2
4
=1
D、
x2
4
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<a<1,則方程a|x|=|logax|的實(shí)根個(gè)數(shù)( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程sinx+
3
cosx-a=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A、[-2,2]
B、(-2,2)
C、[-1,1]
D、[-1-
3
,1+
3
]

查看答案和解析>>

同步練習(xí)冊(cè)答案