精英家教網 > 高中數學 > 題目詳情

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

獲得相應職位概率

0.4

0.3

0.2

0.1

獲得相應職位概率

0.4

0.3

0.2

0.1

(1)根據以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;

(2)某課外實習作業(yè)小組調查了1000名職場人士,就選擇這兩家公司的意愿做了統(tǒng)計,得到以下數據分布:

選擇意愿

人員結構

40歲以上(含40歲)男性

40歲以上(含40歲)女性

40歲以下男性

40歲以下女性

選擇甲公司

110

120

140

80

選擇乙公司

150

90

200

110

若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k15.5513,測得出選擇意愿與年齡有關系的結論犯錯誤的概率的上限是多少?并用統(tǒng)計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

【答案】(1)見解析;(2)見解析

【解析】

(1)分別求出兩家公司的月薪的期望EX)、EY),經計算EX)=EY),再求出兩家公司的月薪的方差,DX)<DY),比較這些數據即可作出選擇;(2)由k15.55135.024,結合表中對應值,可以得出“選擇意愿與年齡有關系”的結論的犯錯的概率的上限,由題中數據可以得到選擇意愿與性別兩個分類變量的2×2列聯表,求出對應的K2,可得出結論“選擇意愿與性別有關”的犯錯誤的概率的上限,從而可知選擇意愿與性別關聯性更大。

1)設甲公司與乙公司的月薪分別為隨機變量X,Y,

EX)=6000×0.4+7000×0.3+8000×0.2+9000×0.17000,

EY)=5000×0.4+7000×0.3+9000×0.2+11000×0.17000,

DX)=(600070002×0.4+700070002×0.3+800070002×0.2+900070002×0.1=10002,

DY)=(500070002×0.4+700070002×0.3+900070002×0.2+1100070002×0.1=20002

EX)=EY),DX)<DY),

我希望不同職位的月薪差距小一些,故選擇甲公司;

或我希望不同職位的月薪差距大一些,故選擇乙公司;

2)因為k15.55135.024,根據表中對應值,

得出“選擇意愿與年齡有關系”的結論犯錯的概率的上限是0.025,

由數據分布可得選擇意愿與性別兩個分類變量的2×2列聯表如下:

選擇甲公司

選擇乙公司

總計

250

350

600

200

200

400

總計

450

550

1000

計算K2≈6.734,

K2=6.734>6.635,

對照臨界值表得出結論“選擇意愿與性別有關”的犯錯誤的概率上限為0.01,

由0.01<0.025,所以與年齡相比,選擇意愿與性別關聯性更大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為考察某種藥物預防疾病的效果,進行動物試驗,調查了 105 個樣本,統(tǒng)計結果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.

(1)根據所給樣本數據完成 列聯表中的數據;

(2)請問能有多大把握認為藥物有效?

(參考公式:獨立性檢驗臨界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合計

服藥

沒服藥

合計

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知分別是的外心、內心,不重合,的內部或邊上,且或者的內部或者,試求出使得等式成立的一個充要條件用關于的內角的條件表示)。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某工廠生產的某種產品中抽取1000件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:

(1)求這1000件產品質量指標值的樣本平均數和樣本方差(同一組數據用該區(qū)間的中點值作代表)

(2)由頻率分布直方圖可以認為,這種產品的質量指標值服從正態(tài)分布,其中以近似為樣本平均數,近似為樣本方差

(。├迷撜龖B(tài)分布,求;

(ⅱ)某用戶從該工廠購買了100件這種產品,記表示這100件產品中質量指標值為于區(qū)間(127.6,140)的產品件數,利用(ⅰ)的結果,求

附:.若,則,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的一個頂點為,且過拋物線的焦點F

(1)求橢圓C的方程及離心率;

(2)設點Q是橢圓C上一動點,試問直線上是否存在點P,使得四邊形PFQB是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)時,求函數的極值;

(2)時,討論函數的單調性;

(3)若對任意的,恒有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】第35屆牡丹花會期間,我班有5名學生參加志愿者服務,服務場所是王城公園和牡丹公園.

(1)若學生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?

(2)每名學生都被隨機分配到其中的一個公園,設分別表示5名學生分配到王城公園和牡丹公園的人數,記,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的奇函數,當x>0時,.

1)求f(x)的解析式;

2)設x[1,2]時,函數,是否存在實數m使得g(x)的最小值為6,若存在,求m的取值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是

A. yx具有正的線性相關關系

B. 回歸直線過樣本點的中心(

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

同步練習冊答案